
CALDAM 2023 
 

Indo-Dutch Pre-Conference School on 
Algorithms and Combinatorics 

 
February 6 - 7, 2023 

 
 
 
 
 
 
 

Outline of Lectures 
 
 
 
 
 
 
 
 
 
 
 
Organized by              Sponsored by 

                   



2 
 

CALDAM 2023 Pre-Conference School on 
Algorithms and Combinatorics 

February 6-7, 2023 
 

 

 

Organized by: 

Dhirubhai Ambani Institute of  
         Information and Communication Technology, 
Gandhinagar, Gujarat 382007, India 

 
 
 
Coordinated by: 

 Bodo Manthey, (Co-Convenor)  
University of Twente, The Netherlands 

 R. S. Lekshmi,  
PSG College of Technology, India  

 Sunitha VadivelMurugan, (Co-Convenor)  
DA-IICT, India  

 

Sponsored by: 

Science and Engineering Research Board, 
Department of Science and Technology,  
Government of India  
 
 



3 
 

Preface 
 

Discrete Mathematics studies mathematical structures that are discrete, rather 
than continuous, such as integers, graphs, logic, algorithms, and their operations, 
etc.  Discrete Mathematics concerns itself with problems of the following kinds: 
(1) finding an optimal/extremal object from a large or an infinite family of 
discrete objects, and (2) Combinatorics or the mathematics of counting the 
number of objects satisfying a set of properties among a large family of discrete 
objects.  Most computationally hard problems are precisely the problems of 
determining the optimal object from a large family of discrete objects or counting 
the size of such a family.  All non-trivial solutions to these problems emerge from 
the theory of Discrete Mathematics.  Often constructive proofs of theorems in 
Discrete Mathematics lead to algorithms in this domain.  Today the applications 
of Discrete Mathematics form the foundations of Graph Theory, Cryptography, 
Operations Research, Logic, Computational Geometry, Combinatorics, 
Algorithms, Theoretical Computer Science, Information Theory, and many 
others. 

 
The field of Discrete Mathematics in all its branches is a rich and continuously 
evolving area of research.  The school proposes to bring together prominent and 
leading researchers in Algorithms and Combinatorics to give lectures on recent 
developments in these overlapping areas of Discrete Mathematics.  This will 
benefit university teachers, researchers, and doctoral students working in the area 
of Discrete Mathematics and Computer Science, by exposing them to the recent 
developments and applications in Computational Geometry, Algorithms, 
Combinatorics, and Graph Theory. 

 
The school is aimed at fulfilling two purposes: (i) as a Pre-Conference School for 
CALDAM 2023, and (ii) as an Indo-Dutch School on Algorithms and 
Combinatorics.  The school is organized by the Dhirubhai Ambani Institute of 
Information and Communication Technology, Gandhinagar, Gujarat, India.  The 
school is funded by the Science and Engineering Research Board, Department of 
Science and Technology, Government of India. 
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Smoothed Analysis and its 
Applications to Local Search 
Heuristics 

Mark de Berg Jessie van Rhijn 

10:30 – 
11:00          Break 
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Matching Polytope 
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Arrangements, Partitions, and Applications

Mark de Berg ∗

Department of Mathematics and Computer Science,
TU Eindhoven, the Netherlands, M.T.d.Berg@tue.nl.

Computational geometry [5] is the branch of algorithms research that deals with spatial
data. It has many applications, ranging from geographic information science and computer-
aided design to robotics and molecular biology. Scientifically, the area is closely related
to discrete and combinatorial geometry. Computational geometry started in 1980s and
since then many beautiful techniques have been developed. In this lecture I will discuss
(substructures in) arrangements and techniques for partitioning arrangements, which are
geometric tools that underlie many old as well as many recent geometric algorithms.

(Substructures in) arrangements. Let L be a set of n lines in R2. Then A(L),
the arrangement induced by L is the subdivision of R2 induced by L. More precisely,
the arrangement A(L) consists of 2-dimensional faces (the cells of the arrangement), 1-
dimensional faces (the edges of the arrangement), and 0-dimensional faces (the vertices of
the arrangement); see Figure 1(i) for an illustration. Arrangements can also be studied for
line segments in R2, and for hyperplanes, surfaces, or surface patches in Rd for d ⩾ 2.

Arrangements play a fundamental role in computational geometry, because many prob-
lems can be phrased in terms of arrangements when translated into a suitable parametric
space. Depending on the problem at hand, one is then often interested in only a part
of the arrangement, such as a single cell, or the upper envelope; see Figure 1(i) and (iii).
Therefore it is important to analyze the complexity of substructures in arrangements. For
example, how many vertices and edges can the upper envelope (or: a single cell) of n curves
in R2 have?

In the lecture I will discuss some basic results on the complexity of substructures in
arrangements. We will see the connection to Davenport-Schinzel sequences [8], as well
as the celebrated Clarkson-Shor technique for analyzing the complexity of the (⩽ k)-level
in arrangements. I will also give examples of problems that can be solved by computing
or analyzing (substructures in) arrangements, in particular for problems involving moving
points.

∗MdB is supported by the Dutch Research Council (NWO) through Gravitation-grant NETWORKS-
024.002.003.
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Fig. 1: (i) An arrangement induced by four lines, with 11 cells, 16 edges, and 6 vertices.
(ii) The upper envelope of a set of segments. (iii) A single cell in an arrangement of
segments. (iv) Three triangles with cyclic overlap in the depth order relation. Cutting
the red triangle as indicated produces a set of four objects (the green and blue triangle
and the two red pieces) without cyclic overlap.

Partitioning arrangements. Divide-and-conquer is one of the most important algo-
rithmic design techniques. Typically the input is divided into subsets, on which suitable
subproblems are defined which are then solved recursively. When applied to problems
involving spatial data, one often uses geometric divide-and-conquer. Here the space is par-
titioned into regions, and a subproblem is defined for the objects lying (partially) inside
each region. I will discuss techniques to obtain good partitionings for arrangements. In
particular, we will study cuttings, an old but still powerful technique, and polynomial par-
titions [7, 1], a more recent technique. As an example of an application of these techniques,
we will study the following problem [3, 4]: Suppose we are given a set S of n line segments
(or: triangles) in R3, and we wish to cut these segments (or triangles) into pieces such that
their depth-order relation is acyclic, as in Figure 1(iv). How many cuts are needed in the
worst case?

References

[1] P.K. Agarwal, B. Aronov, E. Ezra, and J. Zahl. An efficient algorithm for generalized
polynomial partitioning and its applications. SIAM J. Comput. 50:760–787, 2021.

[2] B. Aronov Y. Miller, and M. Sharir. Eliminating depth cycles among triangles in three
dimensions. Discret. Comput. Geom. 64: 627–653, 2020.

[3] B. Aronov and M. Sharir. Almost tight bounds for eliminating depth cycles in three
dimensions. Discret. Comput. Geom. 59: 725–741, 2018.

[4] M. de Berg. Removing depth-order cycles among triangles: An algorithm generating
triangular fragments. Discret. Comput. Geom. 65: 450–469, 2021.

[5] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:
Algorithms and Applications. Springer, 2008.

[6] K.L. Clarkson and P.W. Shor. Application of Random Sampling in Computational
Geometry, II. Discret. Comput. Geom. 4: 387–421, 1989.
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[7] L. Guth. Polynomial partitioning for a set of varieties. Math. Proc. Camb. Phil.
Soc. 159:459–469, 2015.

[8] M. Sharir and P.K. Agarwal. Davenport-Schinzel sequences and their Geometric Ap-
plications. Cambridge University Press, 1995.
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Graph Coloring Problems

Rishi Ranjan Singh
Indian Institute of Technology Bhilai,

Sejbahar, Raipur, India, rishi@iitbhilai.ac.in

Scheduling problems are promptly visible in designing time-tables, scheduling
jobs on CPU, accessing data from hard-discs, routing vehicles to minimize
fuel consumption etc. [9, 7, 6]. Graph Coloring problems are closely related
to scheduling problems. Graph coloring problems also exhibit similar real-
world applications [5, 3, 2, 1]. The objective in a general graph coloring
problem is to find the least number of colors to fulfill the demand of coloring.
Coloring problems relate to those scheduling problems where the objective
is to minimize the number of machines required to meet the demand. For
example, the vertex coloring problem requires finding the minimum cost color
assignment on the vertices such that the assigned colors on the vertices satisfy
some given constraints.

This talk will describe a few variants of graph coloring problems and
some primary results for these versions of graph coloring problems. It will
start with proper vertex, edge, and total coloring problems. Various gener-
alizations of graph coloring problems or coloring with additional constraints,
for example, list coloring, path coloring etc. [10, 4] will be explained next.
Afterward, this talk will touch upon improper graph coloring problems [8],
which are different type of graph coloring problems. A brief discussion on
clustered graph coloring [11] will be done towards the end of this talk.

References

[1] Shamim Ahmed. Applications of graph coloring in modern computer
science. International Journal of Computer and Information Technology,
3(2):1–7, 2012.
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[2] Nicolas Barnier and Pascal Brisset. Graph coloring for air traffic flow
management. Annals of operations research, 130(1):163–178, 2004.

[3] D. de Werra. An introduction to timetabling. European Journal of
Operational Research, 19(2):151–162, 1985.

[4] Piotr Formanowicz and Krzysztof Tanaś. A survey of graph coloring-
its types, methods and applications. Foundations of Computing and
Decision Sciences, 37(3):223–238, 2012.

[5] M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified np-
complete graph problems. Theoretical Computer Science, 1(3):237–267,
1976.

[6] Daya Ram Gaur, Apurva Mudgal, and Rishi Ranjan Singh. Routing
vehicles to minimize fuel consumption. Operations Research Letters,
41(6):576–580, 2013.

[7] Robert Geist and Stephen Daniel. A continuum of disk scheduling algo-
rithms. ACM Transactions on Computer Systems (TOCS), 5(1):77–92,
1987.

[8] Ross J Kang. Improper colourings of graphs. 2008.

[9] ES Page. An approach to the scheduling of jobs on machines. Journal of
the Royal Statistical Society: Series B (Methodological), 23(2):484–492,
1961.

[10] Panos M Pardalos, Thelma Mavridou, and Jue Xue. The graph col-
oring problem: A bibliographic survey. In Handbook of combinatorial
optimization, pages 1077–1141. Springer, 1998.

[11] David Wood. Defective and clustered graph colouring. The Electronic
Journal of Combinatorics, 1000:23–13, 2018.
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Games on Graphs and Eternal Vertex Cover

Neeldhara Misra

Indian Institute of Technology Gandhinagar,
Palaj, Gandhinagar, Gujarat, India, neeldhara.m@iitgn.ac.in

Abstract

Pursuit-Evasion games typically involve two types of players: those in
pursuit (aka cops) and the so-called evaders (aka robbers) [1]. The back-
drop is usually a network with specific rules that dictate how the players
can move. These are turn-based games, and one is usually interested in
knowing whether and how the evaders can be cornered. We often want to
do this as inexpensively and quickly as we can, which leads to questions
about optimizing the number of cops we deploy and the number of rounds
that the game will last. It turns out that answers to these questions often
have deep connections with the structure of the underlying network. This
first part of this talk will involve a few glimpses of such connections.

In the second part of the talk, we will focus on the Eternal Vertex
Cover problem, which is a natural dynamic variant of the vertex cover
problem. Here, have a two player game in which guards are placed on
some vertices of a graph. In every move, one player (the attacker) attacks
an edge. In response to the attack, the second player (the defender) moves
some of the guards along the edges of the graph in such a manner that
at least one guard moves along the attacked edge. If such a movement
is not possible, then the attacker wins. If the defender can defend the
graph against an infinite sequence of attacks, then the defender wins.
The minimum number of guards with which the defender has a winning
strategy is called the eternal vertex cover number of the graph G. We
will survey some recent developments around Eternal Vertex Cover and
closely related problems.

References

[1] Bonato, A. The game of cops and robbers on graphs. (American Mathe-
matical Soc.,2011)
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From approximate to exact integer
programming

Daniel Dadush

Centrum Wiskunde & Informatica (CWI),

the Netherlands, dadush@cwi.nl

Approximate integer programming is the following: For a convex body K ∈ Rn, either
determine whetherK∩Zn is empty, or find an integer point in the convex body scaled by
2 from its center of gravity c. Approximate integer programming can be solved in time
2O(n) while the fastest known methods for exact integer programming run in time O(n)n.
So far, there are no efficient methods for integer programming known that are based on
approximate integer programming. Our main contribution are two such methods, each
yielding novel complexity results.
First, we show that an integer point x ∈ K ∩Zn can be found in time 2O(n), provided

that the remainders of each component x(mod l) for some arbitrarily fixed l ≥ 5(n+ 1)
of x are given. The algorithm is based on a cutting-plane technique, iteratively halving
the volume of the feasible set. The cutting planes are determined via approximate
integer programming. Enumeration of the possible remainders gives a O(n)n algorithm
for general integer programming. This matches the current best bound of an algorithm
by Dadush (2012) that is considerably more involved. Our algorithm also relies on a new
asymmetric approximate Carathéodory theorem that might be of interest on its own.
Our second method concerns integer programming problems in equation-standard

form Ax = b, 0 ≤ x ≤ u, x ∈ Zn. Such a problem can be reduced to the solution of∏n
i=1O(log ui+1) approximate integer programming problems. This implies, for example

that knapsack or subset-sum problems with polynomial variable range 0 ≤ xi ≤ p(n)
can be solved in time (logn)O(n). For these problems, the best running time so far was
O(n)n.
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Smoothed Analysis and its Applications to
Local Search Heuristics

Jesse van Rhijn

University of Twente,

Enschede, the Netherlands, j.vanrhijn@utwente.nl

In the analysis of algorithms, one often considers the worst case time complexity of an
algorithm. This quantity brings with it strong performance guarantees. However, the
running time may in practice be much shorter than the worst case time complexity. As
an example, take the simplex method for linear programming. Although its worst case
running time is exponential in the number of variables, it often terminates in polynomial
time. This has its consequences in practice: the simplex method remains a popular tool
for solving linear programs, even though guaranteed polynomial-time algorithms are
available.
As a way to resolve this conflict between practice and theory, Spielman & Teng de-

veloped smoothed analysis (SA). In this framework, one perturbs worst case instances
by random variables, in the hopes that the running time of an algorithm on the result-
ing instance is closer to practical experience. In its first application, Spielman & Teng
provided polynomial smoothed time complexity bounds for the simplex method.
A popular optimization paradigm that often exhibits poor worst case behavior is

local search. Such optimization algorithms function by modifying candidate solutions
of an optimization problem in order to reduce their objective value. Examples of local
search methods include k-opt for the Travelling Salesperson Problem (TSP), k-means
for clustering, and the flip heuristic for Max Cut. These three examples also each show
exponential worst case running time, and polynomial smoothed time complexity.
In this talk, we will acquaint ourselves with the paradigm of smoothed analysis, and

in particular its application to local search heuristics. We will survey some results on
this topic, which demonstrate the effectiveness of SA in advancing our understanding
of local search heuristics. We will moreover perform a smoothed analysis of 2-opt, a
simple heuristic for the TSP. We conclude with some open problems and challenges for
the method.
Some references related to this work are [1–7]
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2-Opt Algorithm for the General TSP. ACM Transactions on Algorithms, 13(1):10:1–
10:15, September 2016.

[5] Bodo Manthey. Smoothed Analysis of Local Search. In Tim Roughgarden, editor,
Beyond the Worst-Case Analysis of Algorithms, pages 285–308. Cambridge Univer-
sity Press, Cambridge, 2021.

[6] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. Journal of the ACM, 51(3):385–
463, May 2004.

[7] Andrea Vattani. k-means Requires Exponentially Many Iterations Even in the Plane.
Discrete & Computational Geometry, 45(4):596–616, June 2011.

14



Graph Classes arising from the Perfect Matching
Polytope

Nishad Kothari
Indian Institute of Technology Madras,

Chennai, Tamil Nadu, India, nishad@cse.iitm.ac.in

Matchings and perfect matchings have received considerable attention in Graph Theory
as well as in other related areas (such as, but not limited to, algorithms and optimization); see
Lovász and Plummer [LP86]. In particular, the perfect matching polytope has been studied
extensively; see Schrijver [Sch03]. However, there still remain many questions — pertaining
to this polytope and related graph classes — to which we do not know the answers. Before
going further, let’s make sure that we are on the same page. (In other words, let’s state
things formally.)

For a (loopless undirected) graph G and a vertex v ∈ V (G), we use ∂(v) to denote the
set of edges incident with v. A set of edges, say M ⊆ E(G), is a perfect matching if it
contains precisely one edge incident with each vertex (that is, if |M ∩ ∂(v)| = 1 for each
v ∈ V (G)). One may view each perfect matching M as a 0-1 vector, say χM , in R|E(G)|: if
an edge e belongs to M , the corresponding component χM

e is 1; otherwise, χM
e is 0. We refer

to these vectors as the perfect matching vectors of G; now, the perfect matching polytope of
G, denoted by PMP(G), is their convex hull. For instance, the famous Petersen graph (on
10 vertices and 15 edges) has precisely 6 perfect matchings (convince yourself — it is a good
exercise); consequently, its perfect matching polytope is a convex body in R15 with precisely
6 extreme points (aka corners).

In what follows, I will describe two graphs classes whose definitions are motivated by nat-
ural questions and properties pertaining to the perfect matching polytope. We will first see
polyhedral definitions of these graphs classes, and later discuss equivalent graph-theoretical
formulations (in terms of ‘conformal subgraphs’).

Birkhoff-von Neumann Graphs:

It is well-known that every convex polytope is the set of solutions to a system of linear
equations and inequalities (that is, the feasible region of a linear program). This leads to a
natural problem (in polyhedral combinatorics): given a graph G, formulate a linear program
whose feasible region is precisely its perfect matching polytope PMP(G). Below, we discuss
two necessary conditions for a vector x ∈ R|E(G)| to belong to PMP(G).

Suppose that x ∈ PMP(G). In other words, x can be expressed as a convex combination
of perfect matching vectors of G. Since each perfect matching vector is a 0-1 vector, clearly

15



x is non-negative. That is, xe ≥ 0 for each edge e ∈ E(G) — these inequalities are called
non-negativity constraints. Furthermore, if χM is a perfect matching vector, it satisfies∑

e∈∂(v) χ
M
e = 1 at each vertex v ∈ V (G). This implies that x also satisfies the same — i.e.,∑

e∈∂(v) xe = 1 — these equations are called degree constraints.

As noted above, given a graph G, every vector in PMP(G) satisfies the corresponding
non-negativity as well as degree constraints. Unfortunately, these necessary conditions are
not always sufficient! For instance, the Petersen graph has two vertex-disjoint 5-cycles; see
if you can use this hint to come up with a vector that satisfies the non-negativity and degree
constraints, but does not belong to the perfect matching polytope (of the Petersen graph).
Interestingly however, classical results of Birkhoff and of von Neumann, imply that these
necessary conditions are in fact sufficient in the case of bipartite graphs.

We say that a graph G is Birkhoff-von Neumann if PMP(G) is completely characterized
by the non-negativity and degree constraints. It follows from the above discussion that all
bipartite graphs are Birkhoff-von Neumann, whereas the Petersen graph is not. Interestingly,
many nonbipartite graphs are also Birkhoff-von Neumann; one such example is an odd wheel
(that is, any graph obtained from an odd cycle graph by adding a new vertex and making it
adjacent to all other vertices). This leads us to the following decision problem.

Decision Problem 1: Given a graph G, decide whether G is Birkhoff-von Neumann.

The above decision problem is in the complexity class co-NP, but is not known to be in
NP; thus it is also not known to be in P.

PM-compact Graphs:

Given any polytope P , one may construct a simple undirected graph known as the skele-
ton of P and denoted by S(P), as follows. The graph S(P) has precisely one vertex cor-
responding to each extreme point (that is, face of dimension zero) of P , and two vertices
of S(P) are adjacent if and only if the corresponding extreme points belong to a common
“edge” (that is, face of dimension one) of P . For example, if P denotes the three-dimensional
cube, then S(P) is the unique bipartite cubic (aka 3-regular) simple graph on 8 vertices (and
12 edges) — known as the cube graph (for obvious reasons).

We say that a polytope P is compact if its skeleton S(P) is a complete graph. For instance,
the three-dimensional cube is not compact; however, the tetrahedron is compact. In the same
spirit, a graph G is perfect matching compact, or simply PM-compact, if its perfect matching
polytope PMP(G) is compact. This leads us to our next decision problem.

Decision Problem 2: Given a graph G, decide whether G is PM-compact.

As before, the above decision problem is in the complexity class co-NP, but is not known
to be in NP; thus it is also not known to be in P.
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Conformal Subgraphs:

For most problems pertaining to the study of perfect matchings, one may restrict atten-
tion to matching covered graphs — that is, connected nontrivial graphs with the additional
property that each edge belongs to some perfect matching. The same holds for the above
mentioned decision problems.

In our previous discussion, we defined the Birkhoff-von Neumann and PM-compact prop-
erties using the perfect matching polytope. Is there a way to define them using just graph-
theoretical notions and concepts? Yes, there is.

A subgraph H of a graph G is conformal if the graph G− V (H) has a perfect matching.
For instance, in the case of the Petersen graph, all of its 8-cycles are conformal; whereas,
none of its 6-cycles are conformal (check for yourself). Conformality plays an important role
in the study of perfect matchings, and it is intrinsically related to the ear decomposition
theory of matching covered graphs (which we will skip here).

We use the term bicycle to refer to a pair of vertex-disjoint cycles. Observe that if (Q1, Q2)
is a conformal bicycle in a matching covered graph G, then G−V (Q1)−V (Q2) has a perfect
matching; thus, either Q1 and Q2 are both odd cycles, or they are both even cycles. In the
former case, we say that (Q1, Q2) is an odd conformal bicycle; in the latter case, we say that
(Q1, Q2) is an even conformal bicycle.

The following result of Balinski and Russakoff [BR74], and independently due to Chvátal
[Chv75], gives a graph-theoretical way of seeing why Decision Problem 2 is in co-NP.

Theorem 1. A matching covered graph is not PM-compact if and only if it has an even
conformal bicycle.

Likewise, the following result of Balas [Bal81] provides a graph-theoretical explanation
as to why Decision Problem 1 is in co-NP.

Theorem 2. A matching covered graph is not Birkhoff-von Neumann if and only if it has
an odd conformal bicycle.

Recent Developments:

In this section, by ‘graph’, we mean ‘matching covered graph’.

In a recent paper with Carvalho, Lucchesi and Murty [LCKM18], we established that the
problem of characterizing Birkhoff-von Neumann graphs is equivalent to another important
problem in Matching Theory — that of characterizing “solid” graphs. Earlier, they [CLM06]
provided a complete characterization of Birkhoff-von Neumann planar graphs.

In the case of PM-compact graphs, Wang, Lin, Carvalho, Lucchesi, Sanjith and Little
[WLC+13] characterized those that are either bipartite or “near-bipartite”, whereas Wang,
Shang, Lin and Lucchesi [WSLL14] characterized those that are cubic and claw-free.

Most recently, in a joint work with Carvalho, Wang and Lin [CKWL20], we provided a
complete characterization of graphs that are Birkhoff-von Neumann as well as PM-compact
— or, equivalently, graphs that do not have a conformal bicycle. Thus, the problem of
deciding whether a matching covered graph has a conformal bicycle is in co-NP, in NP as
well as in P; unfortunately, the parity requirement is the obstacle!
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Some Open Problems in Computational
Group Theory

Bireswar Das

Indian Institute of Technology Gandhinagar,
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In this talk we will first introduce some basic algorithmic tools in computational group
theory. One of the most important problems in computational group theory, whose com-
plexity status is not yet known, is the group isomorphism problem when the groups are
given by their Cayley tables. It is open whether this problem has a polynomial time
algorithm. On the other hand, it is unlikely that the problem is NP-complete. In this
talk, we will discuss some other computational problems in group theory whose com-
plexity status is still unresolved.
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1 Introduction

For large-scale optimization problems, finding optimal solutions within reasonable time is of-
ten impossible, because many such problems, like the traveling salesman problem (TSP), are
NP-hard. Nevertheless, we often observe that simple heuristics succeed surprisingly quickly in
finding close-to-optimal solutions. Many such heuristics perform well in practice but have a
poor worst-case performance. In order to explain the performance of such heuristics, probabilis-
tic analysis has proved to be a useful alternative to worst-case analysis. Probabilistic analysis
of optimization problems has been conducted with respect to arbitrary instances (without the
triangle inequality) or instances embedded in Euclidean space.

However, the average-case performance of heuristics for general metric instances is not well
understood. This lack of understanding can be explained by two reasons: First, independent
random edge lengths (without the triangle inequality) and random geometric instances are
relatively easy to handle from a technical point of view – the former because of the independence
of the lengths, the latter because Euclidean space provides a structure that can be exploited.
Second, analyzing heuristics on random metric spaces requires an understanding of random
metric spaces in the first place.

In order to initiate systematic research of heuristics on general metric spaces, we use the
following model, proposed by Karp and Steele [9, Section 3.4]: given an undirected complete
graph, we draw edge weights independently at random according to exponential distributions
with parameter 1. The distance between any two vertices is the total weight of the shortest
path between them, measured with respect to the random weights. We call such instances
random shortest path metrics.

This model is also known as first-passage percolation, and has been introduced by Broadbent
and Hammersley as a model for passage of fluid in a porous medium [2]. The appealing feature
of random shortest path metrics is their simplicity, which enables us to use them for the analysis
of heuristics. Dyer and Frieze [5], answering a question raised by Karp and Steele [9], analyzed
the patching heuristic for the asymmetric TSP (ATSP) in this model. They showed that it
comes within a factor of 1 + o(1) of the optimal solution with high probability. Hassin and
Zemel [7] applied their findings to the 1-center problem.

2 Model and Structural Properties

We consider undirected complete graphs G = (V,E) without loops. First, we draw edge weights
w(e) independently at random according to the exponential distribution with parameter 1.
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Second, let the distances d : V ×V → [0,∞) be given as follows: the distance d(u, v) between
u and v is the minimum total weight of a path connecting u and v. In particular, we have
d(v, v) = 0 for all v ∈ V , d(u, v) = d(v, u) because G is undirected, and the triangle inequality:
d(u, v) ≤ d(u, x) + d(x, v) for all u, x, v ∈ V . We call the complete graph with distances d
obtained from random weights w a random shortest path metric.

We use the following notation: Let ∆max = maxu,v d(u, v) denote the diameter of the random
shortest path metric. Let B∆(v) = {u ∈ V | d(u, v) ≤ ∆} be the ball of radius ∆ around v,
i.e., the set of all nodes whose distance to v is at most ∆.
We denote the minimal ∆ such that there are at least k nodes within a distance of ∆ of v

by τk(v). Formally, we define τk(v) = min{∆ | |B∆(v)| ≥ k}.
By Exp(λ), we denote the exponential distribution with parameter λ. If a random variableX

is distributed according to a probability distribution P , we write X ∼ P . In particular,
X ∼

∑m
i=1 Exp(λi) means that X is the sum of m independent exponentially distributed

random variables with parameters λ1, . . . , λm.
For n ∈ N, let [n] = {1, . . . , n} and let Hn =

∑n
i=1 1/i be the n-th harmonic number.

There has been significant study of random shortest path metrics or first-passage percolation.
The expected length of an edge is known to be lnn/n [4, 8]. Asymptotically the same bound
holds also for the longest edge almost surely [7, 8].
To understand random shortest path metrics, it is convenient to fix a starting vertex v

and see how the lengths from v to the other vertices develop. In this way, we analyze the
distribution of τk(v).
The values τk(v) are generated by a simple birth process as follows. (The same process has

been analyzed by Davis and Prieditis [4], Janson [8], and also in subsequent papers.) We have
τ1(v) = 0.
For k ≥ 1, we are looking for the closest vertex to any vertex in Bτk(v)(v) in order to obtain

τk+1(v). This conditions all edges (u, x) with u ∈ Bτk(v)(v) and x /∈ Bτk(v)(v) to be of length at
least τk(v) − d(v, u). By the memoryless property of exponential distribution, this additional
length is also exponentially distributed. The set Bτk(v)(v) contains k vertices. Thus, there are
k · (n− k) edges to the rest of the graph. Consequently, the difference δk = τk+1(v)− τk(v) is
distributed as the minimum of k(n− k) exponential random variables (with parameter 1), or,
equivalently, as Exp(k · (n − k)). We obtain that τk+1(v) ∼

∑k
i=1 Exp

(
i · (n − i)

)
. Note that

these exponential distributions as well as the random variables δ1, . . . , δn are independent.

Lemma 1. For any k ∈ [n] and any v ∈ V , we have E
(
τk(v)

)
= 1

n ·
(
Hk−1 +Hn−1 −Hn−k

)
and τk(v) ∼

∑k−1
i=1 Exp

(
i · (n− i)

)
.

Lemma 2 (Janson [8, p. 352]). For c > 3, we have P(∆max > c ln(n)/n) ≤ O(n3−c log2 n).

A key structural insight for the analysis of algorithms is that nodes can be clustered in a
few clusters of relatively small diameter according to the following lemma.

Lemma 3 (Bringmann et al. [1]). Consider a random shortest path metric and let ∆ ≥ 0. If
we partition the instance into clusters, each of diameter at most 6∆, then the expected number
of clusters needed is O(1 + n/ exp(∆n/5)).

3 Algorithmic Results

Construction Heuristics for the TSP. Insertion heuristics and the nearest neighbor
heuristic are prominent heuristics for construct a reasonably short tour for the TSP. Inser-
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tion heuristics achieve an approximation ratio between constant and O(log n), depending on
the insertion rule used [13]. The nearest neighbor is known to achieve an approximation ratio
of O(log n). Both heuristics can be shown to achieve constant approximation ratio on RSP
instances using the aforementioned clustering argument (Lemma 3) [1].

2-Opt for the TSP and Sparse Graphs. The 2-opt heuristic is a popular local search
heuristic for the TSP. In the worst case on metric instances, it is O(

√
n) [3]. For independent,

non-metric edge lengths drawn uniformly from the interval [0, 1], the expected approximation
ratio is O(

√
n · log3/2 n) [6].

We easily get an approximation ratio of O(log n) based on the two (almost trivial) facts that
the length of the optimal tour is Θ(1) with high probability and that ∆max = O(log n/n) with
high probability. (An open problem is to improve this.)

However, we can also consider non-complete graphs to generate random metrics. The process
is exactly the same: draw random edge weights and take shortest paths. Given that the graph
is connected, the result will be a complete graph with edge lengths that for a metric. If we
have sparse graphs to generate the random instances, then 2-opt can be shown to achieve an
approximation ratio of O(1) [11].

Facility Location. The trivial algorithm of opening the k cheapest facilities can be shown
to do surprisingly well for the the facility location problem. The approximation ratio ranges
from 1 + o(1) over O(1) to O( 4

√
lnn), depending on the costs of the facility [1, 10].

4 Open Problems

To conclude the paper, let us list the open problems that we consider most interesting:

1. While the distribution of distances in asymmetric instances does not differ much from
the symmetric case, an obstacle in the application of asymmetric random shortest path
metrics seems to be the lack of clusters of small diameter. Is there an asymmetric
counterpart for this?

2. Is it possible to prove an 1 + o(1) approximation ratio (like Dyer and Frieze [5] for the
patching algorithm) for any of the simple construction heuristics for the TSP?

3. What is the approximation ratio of 2-opt in random shortest path metrics? Can we prove
that the expected ratio of 2-opt is o(log n)?

4. There is some cautious work on generalizing RSP to the case of a non-complete underlying
graph [11, 12]. Are there more general results possible, in particular if the underlying
graph is sparse?
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