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Preface 
 

Discrete Mathematics is viewed as one among the fundamental fields to 
understand mathematical grounds of Computer Science, quintessentially 
Algorithms, Cryptography, Graph Theory, Theory of Computing, and various 
other related disciplines.  Although the above-mentioned fields have origins 
centuries ago, these fields are evergreen and prove to be highly promising due to 
immense research conducted in numerous universities and research labs around 
the globe.  A wide range of computationally simple to intensive problems can be 
defined on the premise of a large family of discrete objects, which when solved 
have enormous applications in plenty of domains. 
 
The Indo-Dutch Pre-Conference School is an initiative to improve research 
through collaboration with researchers worldwide.  The school intends to expose 
current trends in Algorithms and Combinatorics for PhD students and teachers in 
Computer Science and Discrete Mathematics.  The knowledge dissemination and 
sharing will encourage inquisitive students to become prospective researchers. 
 
Young Reseachers’ Forum (YRF) is a pioneer effort in the series of CALDAM 
conference.  The forum is an opportunity for interested participants to present a 
problem they are attempting to solve in the theme of the conference.  
Presentations by students in the forum shall be viewed as an open discussion 
session and the deliberations with speakers and experts will be an inspiration and 
motivation to the students to pursue a research career in the fields of Algorithms 
and Combinatorics.  Together with the conference, an interactive session of this 
kind enables students, researchers and teachers to engage in exchange of 
knowledge, ideas and research methods that benefits all the participants involved 
in the Pre-Conference School. 

 
 
Bodo Manthey     R.S. Lekshmi        Sunitha VadivelMurugan 
University of Twente    PSG College of Tech.       DA-IICT 

   
 

February 05, 2023 
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Time February 06, 2023 February 07, 2023 

08:00 – 
09:15 Registration & Inauguration   

09:15 – 
10:30 

Technical Session - 1 Technical Session - 4 

Arrangements, Partitions, and 
Applications 

Smoothed Analysis and its 
Applications to Local Search 
Heuristics 

Mark de Berg Jessie van Rhijn 

10:30 – 
11:00          Break 

  Technical Session - 2 Technical Session - 5 

 
Graph Coloring Problems  

Graph Classes arising from the Perfect 
Matching Polytope 

Rishi Ranjan Singh Nishad Kothari 

11:45 – 
12:30 

    

Games on Graphs and Eternal 
Vertex Cover 

Some Open Problems in 
Computational Group Theory 

Neeldhara Misra Bireswar Das 

12:30 – 
13:45          Lunch 

13:45 – 
15:00 

Technical Session - 3 Technical Session - 6 

From Approximate to Exact 
Integer Programming 

Random Metrics in the Analysis of 
Algorithms  

Daniel Dadush Bodo Manthey 

15:00 – 
15:30          Break 

15:30 – 
17:00 

Young Researchers Forum 

Participants' Feedback & Conclusion 
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Sangam Balachandar Reddy, 
Saraswati Girish Nanoti, 
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19:30 
onwards 

         Dinner 
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Problems on Transit Functions on graphs

Manoj Changat
Department of Futures Studies

University of Kerala
Thiruvananthapuram-695581, India
mchangat@keralauniversity.ac.in

7, February 2023

Abstract

In this presentation, the notion of transit functions in graphs is
introduced as a generalization of betweenness, intervals, and convexity.
In particular, we discuss transit functions defined by various types of
paths such as shortest paths, induced paths, any path, paths of length
exactly two, etc. in graphs. Problems on Betweenness, intervals, and
convexity of these different types of transit functions are addressed.

References

[1] .H.M. Mulder, Transit functions on graph (and posets), Proc. Int.Conf-
Convexity in Discrete Structures.No.5, 2008 pp. 117-130.

[2] . M. Changat, J. Mathew, Induced path transit function, monotone and
Peano axioms. Interval monotone graphs, Discrete Math. 286 (2004)
185–194.

[3] . M. Changat, S. Klavzar, H.M. Mulder, The all-paths transit function of
a graph, Czech. Math. J. 51 (126) (2001) 439–448. ‘

[4] .M. Changat, H.M. Mulder, G. Sierksma, Convexities related to path
properties on graphs, Discrete Math. 290 (2005) 117–131.

[5] P. Duchet, Convex sets in graphs II. Minimal path convexity, J. Combin.
Theory Ser. B. 44 (1988) 307–316.
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[6] M. Changat, J. Mathew, H. M. Mulder, The induced path function,
monotonicity and betweenness, Discrete Appl. Math.158 (5) (2010)
426–433.

[7] M. Changat, P. G. Narasimha-Shenoi, G. Seethakuttyamma, Betweenness
in graphs: A short survey on shortest and induced path betweenness,
AKCE International Journal of Graphs and Combinatorics, Volume 16,
Issue 1,2019, Pages 96-109

[8] H.M. Mulder: The Interval Function of a Graph. Mathematical Centre
Tracts 132, Mathematisch Centrum, Amsterdam, 1980.

[9] M. A Morgana, H. M. Mulder. The induced path convexity, betweenness,
and svelte graphs, Discrete Mathematics, Volume 254, (2002)349-370
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Total Outer-Connected Domination on convex

split graphs - Complexity Results

A Mohanapriya
Indian Institute of Information Technology, Design and

manufacturing, Kancheepuram

February 2023

Abstract

For a connected graph G, the total outer-connected dominating set
problem (TOCD) asks for a partition of V (G) into D and V (G) \D such
thatD is a total dominating set ofG andG[V (G)\D] is connected. TOCD
is NP-complete on general graphs, chordal graphs and split graphs [1]. In
this work, we introduce a subclass of split graphs called star-convex split
graphs and strengthen the NP-completeness result of split graphs; TOCD
is NP-complete on star-convex split graphs with convexity on clique (inde-
pendent set). In the parameterized setting, it is interesting to observe that
the parameterized version of total outer-connected domination problem
with respect to the solution size is W[2]-hard on star-convex split graphs
with convexity on clique, and is W[1]-hard on star-convex split graphs with
convexity on independent set. Further, we obtain an interesting dichotomy
for TOCD on star-convex split graphs with convexity on clique; TOCD is
polynomial-time solvable if no pendant vertices, and NP-complete, oth-
erwise. If the convexity is on the independent set, then the dichotomy
is; on K1,6-free star-convex split graphs with an imaginary star for clique
vertices is K1,3, TOCD is NP-complete, and polynomial-time solvable,
otherwise. Further, we prove that star-convex split graph with convexity
on independent set does not admit (1 − ϵ) ln |V (G)|-approximation algo-
rithm unless NP ⊆ DTIME(nO(log logn)). Furthermore, we prove that
for path-convex split graphs finding a minimum total-outer connected
domination is polynomial-time solvable.

References

[1] Panda, B.S. and Pandey, A., 2016. Complexity of total outer-connected
domination problem in graphs. Discrete Applied Mathematics, 199, pp.110-
122.
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On Deeply Critical Oriented Cliques

Christopher Duffy a, Pavan P D b, R.B. Sandeep c, Sagnik Sen b

(a) School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia

(b) Department of Mathematics, Indian Institute of Technology Dharwad, Karnataka, India

(c) Department of Computer Science and Engineering, Indian Institute of Technology

Dharwad, Karnataka, India

Abstract
In this work we consider arc criticality in colourings of oriented graphs. We

study deeply critical oriented graphs, those graphs for which the removal of any arc
results in a decrease of the oriented chromatic number by 2. We prove the existence
of deeply critical oriented cliques of every odd order n ≥ 9, closing an open question
posed by Borodin et al. [Journal of Combinatorial Theory, Series B, 81(1):150–155,
2001 ]. Additionally, we prove the non-existence of deeply critical oriented cliques
among the family of circulant oriented cliques of even order.

References

[1] J. Bondy and U. Murty. Graph Theory. Number 244 in Graduate Texts in Mathe-
matics. Springer, 2008.

[2] O. V. Borodin, D. Fon-Der-Flaass, A. V. Kostochka, A. Raspaud, and É. Sopena. On
deeply critical oriented graphs. Journal of Combinatorial Theory, Series B, 81(1):150–
155, 2001.

[3] B. Courcelle. The monadic second order logic of graphs VI: On several representations
of graphs by relational structures. Discrete Applied Mathematics, 54(2-3):117–149,
1994.

[4] B. Courcelle. The monadic second-order logic of graphs IX: machines and their be-
haviours. Theoretical Computer Science, 151(1):125–162, 1995.

[5] W. Klostermeyer and G. MacGillivray. Analogues of cliques for oriented coloring.
Discussiones Mathematicae Graph Theory, 24(3):373–387, 2004.

[6] A. Nandy, S. Sen, and É. Sopena. Outerplanar and planar oriented cliques. Journal
of Graph Theory, 82(2):165–193, 2016.

[7] É. Sopena. Homomorphisms and colourings of oriented graphs: An updated survey.
Discrete Mathematics, 339(7):1993–2005, 2016.
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Radio k-labeling of the infinite path

D K Supraja
Indian Institute of Technology Dharwad, India

February 5, 2023

Abstract

The radio k-chromatic number rck(G) of a graphG is the minimum integer ℓ such
that there is a mapping f from the vertices of G to the set of integers {0, 1, . . . , ℓ}
satisfying |f(u)− f(v)| ≥ k + 1− d(u, v) for any two distinct vertices u, v ∈ V (G),
where d(u, v) denotes the distance between u and v. To date, the radio k-chromatic
number of finite paths [5] and square of finite paths [4] is computed exactly when
k is equal to the diameter of the graph. Moreover, the exact value of the radio
k-chromatic number of an arbitrary power of a finite path is also computed when
the diameter of the path is strictly smaller than k in [1]. The radio k-chromatic
number of the infinite path is conjectured by Kchikech et al. 2007 [3]. Close lower
and upper bounds for the radio k-chromatic number are given for the infinite path
by two different bodies of works [2, 3]. We discuss if the known lower bound can be
improved further to coincide with the upper bound for infinite path.

References

[1] D. Chakraborty, S. Nandi, and S. Sen. On radio k-chromatic number of powers of
paths having small diameter. arXiv preprint arXiv:2106.07424, 2021.

[2] S. Das, S. C. Ghosh, S. Nandi, and S. Sen. A lower bound technique for radio k-
coloring. Discrete Mathematics, 340(5):855–861, 2017.

[3] M. Kchikech, R. Khennoufa, and O. Togni. Linear and cyclic radio k-labelings of trees.
Discussiones Mathematicae Graph Theory, 27(1):105–123, 2007.

[4] D. D.-F. Liu and M. Xie. Radio number for square paths. Ars Combin, 90:307–319,
2009.

[5] D. D.-F. Liu and X. Zhu. Multilevel distance labelings for paths and cycles. SIAM
Journal on Discrete Mathematics, 19(3):610–621, 2005.
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Treasure Hunt in Graph using Pebbles

Adri Bhattacharya
Indian Institute of Technology Guwahati

1 Abstract
In this paper, we study the treasure hunt problem in a graph by a mobile agent. The nodes in the graph
𝐺 = (𝑉, 𝐸) are anonymous and the edges incident to a vertex 𝑣 ∈ 𝑉 whose degree is 𝑑𝑒𝑔(𝑣) and they are
labeled arbitrarily as 0, 1, . . . , 𝑑𝑒𝑔(𝑣) − 1. At a node 𝑡 in 𝐺 a stationary object, called treasure is located.
The mobile agent that is initially located at a node 𝑠 in 𝐺, the starting point of the agent, must find the
treasure by reaching the node 𝑡. The distance from 𝑠 to 𝑡 is 𝐷. The time required to find the treasure is
the total number of edges the agent visits before it finds the treasure. The agent neither have any prior
knowledge about the graph nor the position of the treasure. An oracle that knows the graph, the agent’s
initial position, and the position of the treasure, places some pebbles on the nodes, at most one per node,
of the graph to guide the agent towards the treasure.

This paper aims to study the trade-off between the number of pebbles provided and the time required
to find the treasure. To be specific, we aim to answer the following question:

• “What is the minimum time for treasure hunt in a graph with maximum degree Δ and diameter 𝐷
if 𝑘 pebbles are placed?”

We answer the above question when 𝑘 < 𝐷 or 𝑘 = 𝑐𝐷 for some positive integer 𝑐. We design efficient
algorithms for the agent for different values of 𝑘 . We also propose an almost matching lower bound result
for 𝑘 < 𝐷. In the next section, we discuss some of our contribution.

1.1 Contribution
We study the trade-off between the number of pebbles (𝑘) provided by the oracle and the associated time
required to find the treasure. The contributions in this paper are mentioned below.

• For 𝑘 < 𝐷
2 pebbles, we propose an algorithm that finds the treasure in a graph at time O(𝐷Δ

𝐷
(2𝜂+1) ),

where 𝜂 = 𝑘
3 .

• For 𝐷
2 ≤ 𝑘 < 𝐷, we propose a treasure hunt algorithm with time complexity 𝑂 (𝑘Δ 𝐷

𝑘+1 ).

• In case of bipartite graphs, the proposed algorithm for treasure hunt has time complexity O(𝑘Δ𝐷
𝑘 )

for 0 < 𝑘 < 𝐷.

• For 𝑘 = 𝑐𝐷 where 𝑐 is any positive integer, we give an algorithm that finds the treasure in time
O

[
𝑐𝐷 ( Δ

2𝑐/2 )
2 + 𝑐𝐷

]
• We propose a lower bound result Ω(( 𝑘

𝑒
) 𝑘
𝑘+1 (Δ − 1) 𝐷

𝑘+1 ) on time of treasure hunt for 0 < 𝑘 < 𝐷.
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On Voronoi Games

Ritam M Mitra

ACMU, ISI Kolkata

CALDAM 2023

1 Abstract

Competitive facility location is concerned with the favorable placement of facil-
ities by competing market players. In such a scenario, when the users choose
the facilities based on the nearest-neighbor rule, the optimization criteria is to
maximize the cardinality or the area of the service zone depending on whether
the demand region is discrete or continuous, respectively. In a plane, two play-
ers P1 and P2 place facilities on the plane taking turns for a finite number of
rounds. The game may be played for multiple rounds. Users may place multiple
facilities in each round. We are interested in algorithms for optimal strategies
for placements of facilities by both players. We study different versions of the
Voronoi Game and pose some questions regarding existing algorithms.

2 Reference

[1] Aritra Banik, Bhaswar B. Bhattacharya, and Sandip Das. Optimal strategies
for the one-round discrete Voronoi game on a line. Journal of Combinatorial
Optimization, Vol. 26, 655–669, 2013.

[2] Banik, A., Bhattacharya, B. B., Das, S., Mukherjee, S. (2017). The Discrete
Voronoi game in R2. Computational Geometry, 63 53-62.
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Parameterized complexity of [1, j]-domination
and [1, j]-total domination problems

Balchandar Reddy

School of Computer and Information Sciences,
University of Hyderabad.

21mcpc14@uohyd.ac.in

Abstract. Given a graph G = (V,E), a DOMINATING SET is a set D ⊆
V such that each vertex in V \D is adjacent to at least one vertex in D.
A set D ⊆ V is a [1, j]-DOMINATING SET if every vertex v ∈ V \D has at
least one and at most j neighbours in D. A set D ⊆ V is a [1, j]-TOTAL
DOMINATING SET if every vertex v ∈ V has at least one and at most j
neighbours in D.
Bishnu et al. [2] proved that [1, j]-DOMINATING SET problem is NP-hard
even for chordal and planar graphs. [1, 2]-TOTAL DOMINATING SET is
NP-complete even for bipartite graphs [4]. [1, j]-DOMINATING SET and
[1, j]-TOTAL DOMINATING SET can be solved in time O∗(j + 2)tw and
O∗(2j+2)tw respectively, on graphs of treewidth at most tw [3]. Recently,
Meybodi et al. [1] proved that [1, j]-DOMINATING SET parameterized
by the solution size is W[1]-hard on d-degenerate graphs. They have
also shown that [1, 2]-TOTAL DOMINATING SET cannot be solved in time
O∗(4− ϵ)tw (unless SETH fails).
In this talk, we would like to discuss the following couple of interesting
open problems from the literature:
1. Parameterized complexity of [1, j]-DOMINATING SET problem when

the degeneracy is smaller or equal to j parameterized by the solution
size.

2. The lower bound for [1, 2]-DOMINATING SET problem, or the lower
bound for [1, j]-DOMINATING SET problem in general.

References

1. Alambardar Meybodi, M., Fomin, F.V., Mouawad, A.E., Panolan, F.: On the pa-
rameterized complexity of [1,j]-domination problems. Theoretical Computer Science
804, 207–218 (2020)

2. Bishnu, A., Dutta, K., Ghosh, A., Paul, S.: (1,j)-set problem in graphs. Discrete
Mathematics 339(10), 2515–2525 (2016)

3. van Rooij, J.M.M., Bodlaender, H.L., Rossmanith, P.: Dynamic programming on
tree decompositions using generalised fast subset convolution. In: Fiat, A., Sanders,
P. (eds.) Algorithms - ESA 2009. pp. 566–577. Springer Berlin Heidelberg, Berlin,
Heidelberg (2009)

4. Sharifani, P., Hooshmandasl, M.R.: Some results on [1, k]-sets of lexicographic prod-
ucts of graphs. ArXiv abs/1708.00219 (2017)



Eternal Vertex Cover
Saraswati Girish Nanoti
Department of Mathematics,
Indian Institute of Technology Gandhinagar
nanoti_saraswati@iitgn.ac.in

Abstract

The ETERNAL VERTEX COVER problem is a dynamic variant of the vertex cover problem. We have a two
player game in which guards are placed on some vertices of a graph. In every move, one player (the
attacker) attacks an edge. In response to the attack, the second player (the defender) moves some
of the guards along the edges of the graph in such a manner that at least one guard moves along the
attacked edge. If such a movement is not possible, then the attacker wins. If the defender can defend
the graph against an infinite sequence of attacks, then the defender wins.

The minimum number of guards with which the defender has a winning strategy is called the eternal
vertex cover number of the graph G.

It is clear that evc(G) is at least mvc(G), the size of a minimum vertex cover of G. We say that G is
Spartan if evc(G) = mvc(G). The characterization of Spartan graphs has been largely open. In the
setting of bipartite graphs on 2n vertices where every edge belongs to a perfect matching, an easy
strategy is to have n guards that always move along perfect matchings in response to attacks. We show
that these are essentially the only Spartan bipartite graphs.

On general graphs, the computational problem of determining the minimum eternal vertex cover
number is NP-hard and admits a 2-approximation algorithm and an exponential kernel. We show that
Eternal Vertex Cover is NP-hard and does not admit a polynomial compression even on bipartite graphs
of diameter six.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Algorithm design techniques

Keywords and phrases eternal vertex cover, perfect matchings, bipartite graphs

References
1 Hisashi Araki, Toshihiro Fujito, and Shota Inoue. On the eternal vertex cover numbers of

generalized trees. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 98-A(6):1153–1160,
2015.

2 Jasine Babu, Neeldhara Misra, and Saraswati Nanoti. Eternal vertex cover on bipartite and
co-bipartite graphs. CoRR, abs/2201.03820, 2022. URL: https://arxiv.org/abs/2201.03820,
arXiv:2201.03820.

3 Fedor V. Fomin, Serge Gaspers, Petr A. Golovach, Dieter Kratsch, and Saket Saurabh.
Parameterized algorithm for eternal vertex cover. Information Processing Letters, 110(16):702–706,
2010.

4 William F. Klostermeyer and Christina M. Mynhardt. Edge protection in graphs. Australas. J
Comb., 45:235–250, 2009. URL: http://ajc.maths.uq.edu.au/pdf/45/ajc_v45_p235.pdf.
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On Compressed Zero-divisor Graphs of Finite Commutative
Rings

Reji T and Pavithra R1

Department of Mathematics, Government College Chittur,
Palakkad, Kerala-678104, India.

(Affiliated to University of Calicut, Kerala.)
e-mail: rejiaran@gmail.com, pavithrajeni94@gmail.com

Abstract

Let R be a commutative ring with 1 6= 0. The relation ∼ on R defined by a ∼ b if and only
if annR(a) = annR(b) is an equivalence relation. The compressed zero-divisor graph, ΓE(R)
is the graph associated to R whose vertices are the classes of elements in R except [0] and [1],
and with each pair of distinct classes [x], [y] joined by an edge if and only if [x][y] = 0. We
have studied some properties of ΓE(R), where R is a finite commutative ring with 1 6= 0. If
R ∼= R1 ×R2 × · · · ×Rm is the local ring decomposition of R and the maximal ideals of Ri are
principal ideals, then δ(ΓE(R)) = 1 and the domination number is m. We found an example
that shows the graph ΓE(R) may not have a vertex of degree one if the maximal ideal of the
local ring R is not a principal ideal. If R is a finite commutative ring with 1 6= 0, what would
be the domination number of ΓE(R)?

References
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217 (1999) 434-447. https://doi.org/10.1006/jabr.1998.7840
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