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Geometry is everywhere . . .

• geographic information systems

• computer-aided design and manufacturing

• virtual reality

• robotics

• computational biology

• sensor networks

• databases

• and more . . .

age

salary

30 45

35K

50K

Algorithms for Spatial Data
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area within algorithms research dealing with spatial data

• aim for provably correct solutions (no heuristics)

• theoretical analysis of running time, memory usage: O(· · · )

Computational Geometry

Computational Geometry
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area within algorithms research dealing with spatial data

• aim for provably correct solutions (no heuristics)

• theoretical analysis of running time, memory usage: O(· · · )

Computational Geometry

Computational Geometry

beautiful connections to discrete geometry

• combinatorial bounds needed to analyze algorithms

• computational-geometry techniques useful for
combinatorial problems

Paul Erdős
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Algorithmic design techniques and tools

• plane sweep

• geometric divide-and-conquer

• randomized incremental construction

• parametric search

• (multi-level) geometric data structures

• . . .

Geometric structures and concepts

• Voronoi diagrams and Delaunay triangulations

• arrangements

• cuttings, simplicial partitions, polynomial partitions

• coresets

• . . .

Computational Geometry: Tools of the Trade

today
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(Substructures in) Arrangements

S: set of n lines / segments / curves / etc in R2

A(S) = arrangement induced by S
= partitioning of R2 into faces, edges, and vertices induced by S

combinatorial complexity of A(S) = total number of vertices, edges, faces

edge

vertex

face (cell)
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Substructures in Arrangements

zone k-level

upper envelope

Many geometric problems can be phrased in terms of
(substructures in) arrangements by viewing them in an
appropriate parametric space.

single cell



9

Robot Motion Planning

t

s



9

Robot Motion Planning

t

1. Transform problem to motion-planning problem for a point-shaped robot

s
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Robot Motion Planning

t

1. Transform problem to motion-planning problem for a point-shaped robot
by expanding each obstacle. (Expanded obstacles can intersect!)
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Robot Motion Planning

t

1. Transform problem to motion-planning problem for a point-shaped robot
by expanding each obstacle. (Expanded obstacles can intersect!)

2. Decompose free space into “quadrilaterals”

3. Construct motion graph G and compute path from s to t in G

s
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Robot Motion Planning

reachable region of the robot
=

single cell in arrangement induced by a set S of n curves in R2

for other types of robots: in Rd, where d = #(degrees of freedom)
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The Complexity of (Substructures in) Arrangements

zone k-level

upper envelope single cell

k-level

A(S) := arrangement of set S of n line/segments/curves in R2

(or: hyperplanes/(d− 1)-simplices/surface patches in Rd)

what is the worst-case complexity of these substructures inA(S)?
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Theorem. Let S be a set of n simple curves such that any two curves
intersect at most s times, where S is a fixed constant. Then the
complexity of the full arrangement A(S) is O(n2).

The Complexity of Arrangements
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Proof.

Theorem. Let S be a set of n simple curves such that any two curves
intersect at most s times, where S is a fixed constant. Then the
complexity of the full arrangement A(S) is O(n2).

Assume curves are finite.

• number of vertices

• number of edges

• number of faces

The Complexity of Arrangements
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Proof.

Theorem. Let S be a set of n simple curves such that any two curves
intersect at most s times, where S is a fixed constant. Then the
complexity of the full arrangement A(S) is O(n2).

Assume curves are finite.

• number of vertices

• number of edges

• number of faces

|V | 6 2n+ s ·
(
n
2

)
= O(n2)

The Complexity of Arrangements
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2
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Proof.

Theorem. Let S be a set of n simple curves such that any two curves
intersect at most s times, where S is a fixed constant. Then the
complexity of the full arrangement A(S) is O(n2).

Assume curves are finite.

• number of vertices

• number of edges

• number of faces

|V | 6 2n+ s ·
(
n
2

)
= O(n2)

|E| 6 n · (s(n− 1) + 1) = O(n2)

Euler’s formula:

|V | − |E|+ |F | = 2

The Complexity of Arrangements
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The Complexity of Upper Envelopes

analysis using Davenport-Schinzel sequences
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Davenport-Schinzel sequences

Harold Davenport
(1907–1965)

Andrzej Schinzel
(1937–2021)

A combinatorial problem

Consider a sequence over the alphabet
{1, . . . , n} such that

• . . . i i . . . does not appear

• . . . i . . . j . . . i . . . j . . . does not appear

How long can such a sequence be?
American Journal of Mathematics 87:684–694 (1965)

s+ 2 times
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Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence
that does not contain the following:

• . . . i i . . . no two consecutive symbols are the same

• . . . i . . . j . . . i . . . j . . . no alternating subsequence of length s+ 2

s+ 2 times

Example (n = 9, s = 2)

• 6, 4, 5, 6, 1, 2, 2, 7, 3

• 2, 5, 1, 2, 7, 8, 7, 1, 3, 4

• 3, 6, 4, 2, 5, 1, 5, 9, 8, 9, 7
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Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence
that does not contain the following:

• . . . i i . . . no two consecutive symbols are the same

• . . . i . . . j . . . i . . . j . . . no alternating subsequence of length s+ 2

s+ 2 times

Example (n = 9, s = 2)

• 6, 4, 5, 6, 1, 2, 2, 7, 3

• 2, 5, 1, 2, 7, 8, 7, 1, 3, 4

• 3, 6, 4, 2, 5, 1, 5, 9, 8, 9, 7

Exercise: Determine the maximal possible length of a DS-sequence of
order s as a function of n, for s = 1, s = 2, s = 3, . . .
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Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence
that does not contain the following:

• . . . i i . . . no two consecutive symbols are the same

• . . . i . . . j . . . i . . . j . . . no alternating subsequence of length s+ 2

s+ 2 times

DSs(n) := maximum length of DS-sequence of order s on n symbols

• s = 1:

• s = 2:

=⇒ DS1(n) = npossible sequence: 1, 2, 3, . . . , n
no symbol can appear twice
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Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence
that does not contain the following:

• . . . i i . . . no two consecutive symbols are the same

• . . . i . . . j . . . i . . . j . . . no alternating subsequence of length s+ 2

s+ 2 times

DSs(n) := maximum length of DS-sequence of order s on n symbols

• s = 1:

• s = 2:

=⇒ DS1(n) = npossible sequence: 1, 2, 3, . . . , n
no symbol can appear twice

possible sequence 1, 2, . . . , n− 1, n, n− 1, . . . , 2, 1

=⇒ DS2(n) > 2n− 1

Proof by induction, remove symbol whose first occurrence is last,
plus at most one adjacent symbol:

DS2(n) 6 DS(n− 1) + 2 =⇒ DS2(n) 6 2n− 1
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Davenport-Schinzel sequences

Theorem. DSs(n) is near-linear for any constant s. In particular,

• DS1(n) = n

• DS2(n) = 2n− 1

• DS3(n) = Θ(nα(n))

• DSs(n) = o(n log∗ n) for any fixed constant s

where α(n) is the inverse Ackermann function

α(n) is inverse of Ackermann function A(n), where A(n) = An(n) with:

A1(n) = 2n for n > 1
Ak(1) = 2 for k > 1
Ak(n) = Ak−1(Ak(n− 1)) for k > 2 and n > 2

A(1) = 2, A(2) = 4, A(3) = 16, A(4) = tower of 65536 2’s

α(n) grows slower than super-super-super-super-super-slowly . . .



25

The Complexity of Upper Envelopes

back to upper envelopes
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The Complexity of Upper Envelopes

Theorem. Let S be a set of n infinite x-monotone curves such that any
two curves intersect at most s times. Then the maximum complexity of
the upper envelope of S is O(DSs(n)).

Proof.

1

2

3

4

for example: O(n) for lines
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1

2

3

4

1 12 2

3
4

1

for example: O(n) for lines
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The Complexity of Upper Envelopes

Theorem. Let S be a set of n infinite x-monotone curves such that any
two curves intersect at most s times. Then the maximum complexity of
the upper envelope of S is O(DSs(n)).

Proof.

1

2

3

4

1 12 2

3
4

1

alternating sequence of length t
implies t− 1 intersections

i j i

for example: O(n) for lines
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The Complexity of Upper Envelopes

Theorem. Let S be a set of n infinite x-monotone curves such that any
two curves intersect at most s times. Then the maximum complexity of
the upper envelope of S is O(DSs(n)).

we cannot have alternating
sequence of length s+ 2

=⇒ DS(n, s)-sequence

Proof.

1

2

3

4

1 12 2

3
4

1

alternating sequence of length t
implies t− 1 intersections

i j i

for example: O(n) for lines
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The Complexity of Upper Envelopes

Theorem. Let S be a set of n infinite x-monotone curves such that any
two curves intersect at most s times. Then the maximum complexity of
the upper envelope of S is O(DSs+2(n)).

for example: O(nα(n)) for line segments
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The Complexity of Upper Envelopes

Theorem. Let S be a set of n infinite x-monotone curves such that any
two curves intersect at most s times. Then the maximum complexity of
the upper envelope of S is O(DSs+2(n)).

Proof.
for example: O(nα(n)) for line segments
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The Complexity of Upper Envelopes

Theorem. Let S be a set of n infinite x-monotone curves such that any
two curves intersect at most s times. Then the maximum complexity of
the upper envelope of S is O(DSs+2(n)).

Proof.

alternating sequence of length t
implies t− 1 intersections

i j ji

t− 3

for example: O(nα(n)) for line segments
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The Complexity of Upper Envelopes

Theorem. Let S be a set of n infinite x-monotone curves such that any
two curves intersect at most s times. Then the maximum complexity of
the upper envelope of S is O(DSs+2(n)).

Proof.

alternating sequence of length t
implies t− 1 intersections

i j ji

t− 3
we cannot have alternating
sequence of length s+ 4

=⇒ DS(n, s+ 2)-sequence

for example: O(nα(n)) for line segments
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Upper Envelopes: Applications for Moving Ponits

P : set of n points in R2 that move linearly (or: on polynomial trajectories)

• How often can the closest pair change, in the worst case?

• How often can the convex hull change, in the worst case?

• How often can the Delaunay triangulation change, in the worst case?
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Upper Envelopes: Applications for Moving Ponits

How often can the closest pair change, in the worst case?
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Upper Envelopes: Applications for Moving Ponits

How often can the closest pair change, in the worst case?

Lower bound

Ω(n2) changes
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Upper Envelopes: Applications for Moving Ponits

How often can the closest pair change, in the worst case?

Upper bound
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Upper Envelopes: Applications for Moving Ponits

How often can the closest pair change, in the worst case?

Upper bound

• for each pair p, q define fpq(t) := distance between p and q at time t

• number of changes = complexity of lower envelope of n2 functions

≈ O(n2)
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Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

Lower bound
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Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

Lower bound

Ω(n2) changes
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Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

Trivial upper bound
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Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

Trivial upper bound

convex hull changes =⇒ three points become collinear

=⇒ happens O(1) times for each triple

=⇒ O(n3) changes to convex hull



33

Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

A better bound using upper envelopes
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Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

A better bound using upper envelopes

• for each point p define function fp : [0, 2π)× R>0 → R

θ

f p
(θ
, t

)

p
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Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

A better bound using upper envelopes

• for each point p define function fp : [0, π)× R>0 → R

• p on convex hull at time t iff (there is a θ such that fp(θ, t) > fq(θ, t)
for all q at time t) or (. . .6 . . . )

θ

f p
(θ
, t

)

p
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Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

A better bound using upper envelopes

• for each point p define function fp : [0, π)× R>0 → R

• p on convex hull at time t iff (there is a θ such that fp(θ, t) > fq(θ, t)
for all q at time t) or (. . .6 . . . )

θ

f p
(θ
, t

)

p

• number of changes

= O(complexity of upper envelope of surfaces in R3) = O(n2+ε)
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Theorem. Let S be a set of n curves in the plane such that any two
curves intersect at most s times. Then the maximum complexity of a
single cell of A(S) is O(DSs+2(n)).

The Complexity of Single Cells

proof also uses Davenport-Schinzel sequences but is more complicated

for example: O(nα(n)) for line segments
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Levels in arrangements
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Levels in arrangements

0-level
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Levels in arrangements

1-level
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Levels in arrangements

2-level
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Levels in arrangements

(6 2)-level
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Levels in arrangements

What is the max complexity of the k-level in an arrangement of n lines?

• 0-level = lower envelope =⇒ complexity 6 n

• k > 1: complexity is n2Ω(
√

log k) and O(nk1/3) major open problem
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The Clarkson-Shor Technique: Application to (6 k)-levels

What is the max complexity of the (6 k)-level in an arrangement of n lines?
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The Clarkson-Shor Technique: Application to (6 k)-levels

What is the max complexity of the (6 k)-level in an arrangement of n lines?

Clarkson-Shor ’89: Θ(nk)

• in Rd: Θ(nbd/2ckbd/2c)

• bound for d = 2 was already known
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Theorem. The max complexity of the (6 k)-level in an arrangement
induced by a set L of n lines in the plane is O(nk).

The Clarkson-Shor Technique: Application to (6 k)-levels
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Theorem. The max complexity of the (6 k)-level in an arrangement
induced by a set L of n lines in the plane is O(nk).

Proof.

The Clarkson-Shor Technique: Application to (6 k)-levels
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Theorem. The max complexity of the (6 k)-level in an arrangement
induced by a set L of n lines in the plane is O(nk).

Proof.

Take sample R ⊂ L by picking each line ` ∈ L with probability 1/k.

The Clarkson-Shor Technique: Application to (6 k)-levels
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Theorem. The max complexity of the (6 k)-level in an arrangement
induced by a set L of n lines in the plane is O(nk).

Proof.

Take sample R ⊂ L by picking each line ` ∈ L with probability 1/k.

E
[
complexity of 0-level of R

]
6 E

[
|R|

]
= n/k

The Clarkson-Shor Technique: Application to (6 k)-levels



44

Theorem. The max complexity of the (6 k)-level in an arrangement
induced by a set L of n lines in the plane is O(nk).

Proof.

Take sample R ⊂ L by picking each line ` ∈ L with probability 1/k.

E
[
complexity of 0-level of R

]
6 E

[
|R|

]
= n/k

v

6 k lines

vertex of k-level of L shows up on 0-level of R iff

• both lines defining v are in R

• none of the at most k lines below v are in R

The Clarkson-Shor Technique: Application to (6 k)-levels
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Theorem. The max complexity of the (6 k)-level in an arrangement
induced by a set L of n lines in the plane is O(nk).

Proof.

Take sample R ⊂ L by picking each line ` ∈ L with probability 1/k.

E
[
complexity of 0-level of R

]
6 E

[
|R|

]
= n/k

v

6 k lines

vertex of k-level of L shows up on 0-level of R iff

• both lines defining v are in R

• none of the at most k lines below v are in R

prob >
(

1
k

)2 ·
(
1− 1

k

)k
>

(
1
k

)2 · 1
e

The Clarkson-Shor Technique: Application to (6 k)-levels
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Theorem. The max complexity of the (6 k)-level in an arrangement
induced by a set L of n lines in the plane is O(nk).

Proof.

Take sample R ⊂ L by picking each line ` ∈ L with probability 1/k.

E
[
complexity of 0-level of R

]
6 E

[
|R|

]
= n/k

v

6 k lines

vertex of k-level of L shows up on 0-level of R iff

• both lines defining v are in R

• none of the at most k lines below v are in R

prob >
(

1
k

)2 ·
(
1− 1

k

)k
>

(
1
k

)2 · 1
e

E
[
complexity of 0-level of R

]
> (complexity of k-level in L) ·

(
1
k

)2 · 1
e

The Clarkson-Shor Technique: Application to (6 k)-levels
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Overview of Complexity of Substructures in Arrangements in R2

zone

k-level

upper envelope

single cell

k-level

Θ(n2)

Θ(nα(n))

full arrangement

upper envelope (segments)

single cell (segments)

zone (lines)

k-level (lines)

(6 k)-level (lines)

Θ(n)

Θ(nα(n))

Θ(nk)

O(nk1/3) n2Ω(
√

log k)
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Point Location in Arrangements

• divide-and-conquer: important algorithmic design technique

• for geometric problems: perform divide step by partitioning space
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Point Location in Arrangements

• divide-and-conquer: important algorithmic design technique

• for geometric problems: perform divide step by partitioning space

Example: point location in arrangements

Store lines in data structure such that
we can find the cell containing a query
point q in O(log n) time

Idea

• Partition plane into small
number of regions

• Find region containing
query point q

• Recursively find cell
containing q within region
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Point Location in Arrangements

Analysis

Suppose each region intersects at most n/r lines, for some constant r

• query time:

• storage:
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Analysis

Suppose each region intersects at most n/r lines, for some constant r

• query time:

• storage:

Q(n) = O(r) +Q(n/r) =⇒ Q(n) = O(log n)

S(n) = (number of regions) · S(n/r)
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Point Location in Arrangements

Analysis

Suppose each region intersects at most n/r lines, for some constant r

• query time:

• storage:

Q(n) = O(r) +Q(n/r) =⇒ Q(n) = O(log n)

S(n) = (number of regions) · S(n/r)

(number of regions) = O(r2) =⇒ S(n) = O(n2+ε)
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Partitioning Arrangements: Basic Results

(1/r)-cutting for set L of n lines in R2

partitioning of R2 into (possibly unbounded)
triangles ∆i such that each ∆i intersects
only n/r lines
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Partitioning Arrangements: Basic Results

(1/r)-cutting for set L of n lines in R2

partitioning of R2 into (possibly unbounded)
triangles ∆i such that each ∆i intersects
only n/r lines

Theorem. For any set L of n lines in R2 and any r with 1 6 r 6 n
there is a (1/r)-cutting consisting of O(r2) triangles.
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Partitioning Arrangements: Basic Results

(1/r)-cutting for set L of n lines in R2

partitioning of R2 into (possibly unbounded)
triangles ∆i such that each ∆i intersects
only n/r lines

Theorem. For any set L of n lines in R2 and any r with 1 6 r 6 n
there is a (1/r)-cutting consisting of O(r2) triangles.

Theorem. For any set L of n hyperplanes in Rd and any r with 1 6 r 6 n
there is a (1/r)-cutting consisting of O(rd) simplices.
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Partitioning Arrangements: Basic Results

fine simplicial partition for set P of n points in R2

collection {(P1,∆1), . . . , (Pr,∆r)} where

• P = P1 ∪ . . . ∪ Pr and Pi’s are disjoint

• ∆i is triangle containing Pi

• n/(2r) 6 |Pi| 6 2n/r
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collection {(P1,∆1), . . . , (Pr,∆r)} where

• P = P1 ∪ . . . ∪ Pr and Pi’s are disjoint

• ∆i is triangle containing Pi

• n/(2r) 6 |Pi| 6 2n/r

Theorem. For any set P of n points in R2 and any r with 1 6 r 6 n
there is a fine simplicial partition of O(r) triangles such that any line
crosses O(

√
r) triangles.
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Partitioning Arrangements: Basic Results

fine simplicial partition for set P of n points in R2

collection {(P1,∆1), . . . , (Pr,∆r)} where

• P = P1 ∪ . . . ∪ Pr and Pi’s are disjoint

• ∆i is triangle containing Pi

• n/(2r) 6 |Pi| 6 2n/r

Theorem. For any set P of n points in R2 and any r with 1 6 r 6 n
there is a fine simplicial partition of O(r) triangles such that any line
crosses O(

√
r) triangles.

Theorem. For any set P of n points in Rd and any r with 1 6 r 6 n
there is a fine simplicial partition of O(r) simplices such that any
hyperplane crosses O(r1−1/d) simplices.
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Partitioning Arrangements: Basic Results

Cuttings (and simplicial partitions) form the basis of data structures for

• point location

• range searching

• ray shooting

and of many other algorithmic and combinatorial results
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Polynomial Partitions

Basic polynomial partitions [Guth-Katz’10]

• P = set of n points in Rd

• D = parameter (can depend on n)

Theorem. There exists a surface Z(f) that is the zero-set of a
polynomial of degree at most D such that Rd \ Z(f) consists of
O(Dd) cells each containing O(n/Dd) points from P .
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Polynomial Partitions

Basic polynomial partitions [Guth-Katz’10]

• P = set of n points in Rd

• D = parameter (can depend on n)

Theorem. There exists a surface Z(f) that is the zero-set of a
polynomial of degree at most D such that Rd \ Z(f) consists of
O(Dd) cells each containing O(n/Dd) points from P .

Used to (basically) solve

Erdős distinct-distances problem:

any set of n points in the plane
defines Ω(n/ log n) distinct distances
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Polynomial Partitions

Generalization of polynomial partitions [Guth’15]

• L = set of n lines in Rd

• D = parameter (can depend on n)

Theorem. There exists a surface Z(f) that is the zero-set of a
polynomial of degree at most D such that Rd \ Z(f) consists of
O(Dd) cells each intersecting O(n/Dd−1) lines from L.
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Theorem. There exists a surface Z(f) that is the zero-set of a
polynomial of degree at most D such that Rd \ Z(f) consists of
O(Dd) cells each intersecting O(n/Dd−1) lines from L.

for lines in R3 we get O(D3) cells, each intersecting O(n/D2) lines
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Polynomial Partitions

Generalization of polynomial partitions [Guth’15]

• L = set of n lines in Rd

• D = parameter (can depend on n)

Theorem. There exists a surface Z(f) that is the zero-set of a
polynomial of degree at most D such that Rd \ Z(f) consists of
O(Dd) cells each intersecting O(n/Dd−1) lines from L.

for lines in R3 we get O(D3) cells, each intersecting O(n/D2) lines

(result is actually even more general)
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arrangements

DS-sequences
and upper
envelopes

levels and the
Clarkson-Shor
technique

partitioning
arrangements

eliminating
depth-order

cycles



57

Lecture Overview

substructures in
arrangements

DS-sequences
and upper
envelopes

levels and the
Clarkson-Shor
technique

partitioning
arrangements

eliminating
depth-order

cycles



58

Depth orders

S: set of n disjoint triangles (or other objects) in R3

T is below T ′ (notation: T ≺ T ′):

there is a vertical line ` such that
` ∩ T has smaller z-coordinate than ` ∩ T ′

depth order on S: ordering T1, . . . , Tn consistent with ≺
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Depth orders

S: set of n disjoint triangles (or other objects) in R3

T is below T ′ (notation: T ≺ T ′):

there is a vertical line ` such that
` ∩ T has smaller z-coordinate than ` ∩ T ′

depth order on S: ordering T1, . . . , Tn consistent with ≺

Applications

• computer graphics (Painter’s Algorithm)

• computer-aided design and manufacturing (assembly sequences)
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Depth orders

Depth order need not exist, due to cyclic overlap

Questions:

• Decide if a given order T1, . . . , Tn is a valid depth order.

• Compute a depth order, or decide that none exists.

• How many cuts are needed, in the worst case, to eliminate all cycles?
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Depth orders

Depth order need not exist, due to cyclic overlap

Questions:

• Decide if a given order T1, . . . , Tn is a valid depth order.

• Compute a depth order, or decide that none exists.

• How many cuts are needed, in the worst case, to eliminate all cycles?

cut
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The number of cuts to eliminate all cycles

For line segments in R3

• we can eliminate all cycles using O(n2) cuts

cut each line between any two
adjacent intersections in projection
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for triangles we can also eliminate
all cycles with O(n2) cuts, with a
more complicated procedure
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The number of cuts to eliminate all cycles

For line segments in R3

• we can eliminate all cycles using O(n2) cuts

cut each line between any two
adjacent intersections in projection

for triangles we can also eliminate
all cycles with O(n2) cuts, with a
more complicated procedure

• in the worst case Ω(n3/2) cuts may be needed

three groups of
√
n×
√
n

segments each
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The number of cuts to eliminate all cycles

Can we do better than O(n2) cuts?
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Can we do better than O(n2) cuts?

• O(n9/4) for bipartite weavings of line segments
[Chazelle et al., FOCS’91]

• O(n2−1/69 log16/69 n) to get rid of triangular cycles for lines
[Aronov,Koltun,Sharir STOC’03]
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The number of cuts to eliminate all cycles

Can we do better than O(n2) cuts?

• O(n9/4) for bipartite weavings of line segments
[Chazelle et al., FOCS’91]

• O(n2−1/69 log16/69 n) to get rid of triangular cycles for lines
[Aronov,Koltun,Sharir STOC’03]

And then a breakthroughs happened

• O(n3/2 polylog n) for line segments
[Aronov-Sharir STOC’16]

• O(n3/2+ε) for triangles
[Aronov-Miller-Sharir SODA’17]

technique uses
polynomial partitions

combines Aronov-Sharir result
with cuttings

• O(n7/4 polylog n) for triangles,
with straight-line cuts [dB, FOCS’18]

uses curved cuts
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Polynomial Partitions for Lines in R3
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Polynomial Partitions for Lines in R3

• L = set of n lines, or line segments, in R3

• D = parameter

Theorem. There exists a surface Z(f) that is the zero-set of a polynomial
of degree at most D such that Rd \ Z(f) consists of O(D3) cells each
intersecting O(n/D2) lines from L.
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1. Take polynomial partition Z(f) of degree D, for suitable D.

2. For each line segment ` ∈ L (with ` 6⊂ Z(f)) do the following:

The Aronov-Sharir approach for line segments
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1. Take polynomial partition Z(f) of degree D, for suitable D.

2. For each line segment ` ∈ L (with ` 6⊂ Z(f)) do the following:

The Aronov-Sharir approach for line segments

(i) Cut ` at every point where ` intersects Z(f). O(D) cuts

(ii) Take vertical plane h(`) containing `. Cut ` at points below vertical
tangencies of h(`) ∩ Z(f) and points below singularities.

O(D2) cuts

type (i) cut
(i)

type (ii) cut
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1. Take polynomial partition Z(f) of degree D, for suitable D.

2. For each line segment ` ∈ L (with ` 6⊂ Z(f)) do the following:

The Aronov-Sharir approach for line segments

(i) Cut ` at every point where ` intersects Z(f). O(D) cuts

(ii) Take vertical plane h(`) containing `. Cut ` at points below vertical
tangencies of h(`) ∩ Z(f) and points below singularities.

O(D2) cuts

3. Recursively cut lines within each cell.

type (i) cut
(i)

type (ii) cut
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Lemma. Procedure eliminates all cycles.

The Aronov-Sharir approach for line segments
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Proof. Suppose for a contradiction that there is still a cycle
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• associate 3D polygonal curve Γ to cycle
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Lemma. Procedure eliminates all cycles.

The Aronov-Sharir approach for line segments

Proof. Suppose for a contradiction that there is still a cycle

• associate 3D polygonal curve Γ to cycle

• if Γ lies completely inside cell of R3 \ Z(f)
then cycles are removed by induction
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Lemma. Procedure eliminates all cycles.

The Aronov-Sharir approach for line segments

Proof. Suppose for a contradiction that there is still a cycle

• associate 3D polygonal curve Γ to cycle

• if Γ lies completely inside cell of R3 \ Z(f)
then cycles are removed by induction

• otherwise consider how level (number of
intersection of upward ray with Z(f))
changes as we walk along Γ

(i)
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Lemma. Procedure makes O(n3/2 polylog n) cuts.

The Aronov-Sharir approach for line segments
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Lemma. Procedure makes O(n3/2 polylog n) cuts.

The Aronov-Sharir approach for line segments

Proof. C(n) = O(D3) · C(n/D2) +O(nD2)

D := Θ(n1/4) =⇒ C(n) = O(n3/2 polylog n)
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Lemma. Procedure makes O(n3/2 polylog n) cuts.

The Aronov-Sharir approach for line segments

Proof. C(n) = O(D3) · C(n/D2) +O(nD2)

D := Θ(n1/4) =⇒ C(n) = O(n3/2 polylog n)

• similar but much more complicated approach works for triangles

• triangles are cut by polynomial, so pieces have curved boundaries
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Key idea: Relate depth order for triangles to depth order of its edges

Avoiding curved cuts for triangles
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Key idea: Relate depth order for triangles to depth order of its edges

Avoiding curved cuts for triangles

• T = set of n triangles in R3

• E = set of 3n edges of the triangles

• C = vertical, triangular column

Lemma. If C does not contain any triangle vertex in its interior and
E ∩ C is acyclic, then T ∩ C is acyclic.
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• T = set of n triangles in R3, E = set of 3n triangle edges

Lemma. If C does not contain any triangle vertex in its interior and
E ∩ C is acyclic, then T ∩ C is acyclic.

Avoiding curved cuts for triangles
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• T = set of n triangles in R3, E = set of 3n triangle edges

Lemma. If C does not contain any triangle vertex in its interior and
E ∩ C is acyclic, then T ∩ C is acyclic.

How to use the lemma (failed approach)

1. Compute complete cut set X for E
of size of O(n3/2 polylog n).

Avoiding curved cuts for triangles
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• T = set of n triangles in R3, E = set of 3n triangle edges

Lemma. If C does not contain any triangle vertex in its interior and
E ∩ C is acyclic, then T ∩ C is acyclic.

How to use the lemma (failed approach)

1. Compute complete cut set X for E
of size of O(n3/2 polylog n).

Avoiding curved cuts for triangles
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• T = set of n triangles in R3, E = set of 3n triangle edges

Lemma. If C does not contain any triangle vertex in its interior and
E ∩ C is acyclic, then T ∩ C is acyclic.

Trivial approach:

1. Compute complete cut set X for E
of size of O(n3/2 polylog n).

2. P := {triangle vertices} ∪X.

Avoiding curved cuts for triangles
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• T = set of n triangles in R3, E = set of 3n triangle edges

Lemma. If C does not contain any triangle vertex in its interior and
E ∩ C is acyclic, then T ∩ C is acyclic.

Trivial approach:

1. Compute complete cut set X for E
of size of O(n3/2 polylog n).

2. P := {triangle vertices} ∪X.

Avoiding curved cuts for triangles
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• T = set of n triangles in R3, E = set of 3n triangle edges

Lemma. If C does not contain any triangle vertex in its interior and
E ∩ C is acyclic, then T ∩ C is acyclic.

Trivial approach:

1. Compute complete cut set X for E
of size of O(n3/2 polylog n).

2. P := {triangle vertices} ∪X.
hp := vertical plane through p
HP := {hp : p ∈ P}.

Avoiding curved cuts for triangles
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• T = set of n triangles in R3, E = set of 3n triangle edges

Lemma. If C does not contain any triangle vertex in its interior and
E ∩ C is acyclic, then T ∩ C is acyclic.

Trivial approach:

1. Compute complete cut set X for E
of size of O(n3/2 polylog n).

2. P := {triangle vertices} ∪X.
hp := vertical plane through p
HP := {hp : p ∈ P}. p

hp

Avoiding curved cuts for triangles
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• T = set of n triangles in R3, E = set of 3n triangle edges

Lemma. If C does not contain any triangle vertex in its interior and
E ∩ C is acyclic, then T ∩ C is acyclic.

Trivial approach:

1. Compute complete cut set X for E
of size of O(n3/2 polylog n).

2. P := {triangle vertices} ∪X.
hp := vertical plane through p
HP := {hp : p ∈ P}.

3. Cut all triangles with planes in Hp

=⇒ Removes all cycles

p
hp

Avoiding curved cuts for triangles
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• T = set of n triangles in R3, E = set of 3n triangle edges

Lemma. If C does not contain any triangle vertex in its interior and
E ∩ C is acyclic, then T ∩ C is acyclic.

Trivial approach:

1. Compute complete cut set X for E
of size of O(n3/2 polylog n).

2. P := {triangle vertices} ∪X.
hp := vertical plane through p
HP := {hp : p ∈ P}.

3. Cut all triangles with planes in Hp

=⇒ Removes all cycles

p
hp

but may result in O(n2.5 polylog n) fragments.

Avoiding curved cuts for triangles
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• T = set of n triangles in R3, E = set of 3n triangle edges

Lemma. If C does not contain any triangle vertex in its interior and
E ∩ C is acyclic, then T ∩ C is acyclic.

Trivial approach:

1. Compute complete cut set X for E
of size of O(n3/2 polylog n).

2. P := {triangle vertices} ∪X.
hp := vertical plane through p
HP := {hp : p ∈ P}.

3. Cut all triangles with planes in Hp

=⇒ Removes all cycles

p
hp

but may result in O(n2.5 polylog n) fragments.

Avoiding curved cuts for triangles

using hierarchical gives O(n7/4 polylog n) fragments.
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Lecture Overview

substructures in
arrangements

DS-sequences
and upper
envelopes

levels and the
Clarkson-Shor
technique

partitioning
arrangements

eliminating
depth-order

cycles

open problem:
eliminate cycles in triangles with
o(n7/4) straight-line cuts

open problem:
complexity of k-level
in line arrangement
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Thanks for your attention!

TSP Art by Carig Kaplan and Robert Bosch
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