
1

Mark de Berg (TU Eindhoven)

Fundamental Techniques in Computational Geometry:

ARRANGEMENTS, PARTITIONS, AND APPLICATIONS

substructures in
arrangements

DS-sequences
and upper
envelopes

eliminating
depth-order

cycles

partitioning
arrangements

levels and the
Clarkson-Shor
technique

2

Geometry is everywhere . . .

• geographic information systems

• computer-aided design and manufacturing

• virtual reality

• robotics

• computational biology

• sensor networks

• databases

• and more . . .

age

salary

30 45

35K

50K

Algorithms for Spatial Data

3

area within algorithms research dealing with spatial data

• aim for provably correct solutions (no heuristics)

• theoretical analysis of running time, memory usage: O(· · ·)

Computational Geometry

Computational Geometry

3

area within algorithms research dealing with spatial data

• aim for provably correct solutions (no heuristics)

• theoretical analysis of running time, memory usage: O(· · ·)

Computational Geometry

Computational Geometry

beautiful connections to discrete geometry

• combinatorial bounds needed to analyze algorithms

• computational-geometry techniques useful for
combinatorial problems

Paul Erdős

4

Algorithmic design techniques and tools

• plane sweep

• geometric divide-and-conquer

• randomized incremental construction

• parametric search

• (multi-level) geometric data structures

• . . .

Geometric structures and concepts

• Voronoi diagrams and Delaunay triangulations

• arrangements

• cuttings, simplicial partitions, polynomial partitions

• coresets

• . . .

Computational Geometry: Tools of the Trade

today

5

Part I: Arrangements

Part II: Partionings

Lecture Overview

substructures in
arrangements

DS-sequences
and upper
envelopes

levels and the
Clarkson-Shor
technique

eliminating
depth-order

cycles

partitioning
arrangements

6

Lecture Overview

DS-sequences
and upper
envelopes

levels and the
Clarkson-Shor
technique

eliminating
depth-order

cycles

partitioning
arrangements

substructures in
arrangements

7

(Substructures in) Arrangements

S: set of n lines / segments / curves / etc in R2

A(S) = arrangement induced by S
= partitioning of R2 into faces, edges, and vertices induced by S

combinatorial complexity of A(S) = total number of vertices, edges, faces

edge

vertex

face (cell)

8

Substructures in Arrangements

zone k-level

upper envelope

Many geometric problems can be phrased in terms of
(substructures in) arrangements by viewing them in an
appropriate parametric space.

single cell

9

Robot Motion Planning

t

s

9

Robot Motion Planning

t

1. Transform problem to motion-planning problem for a point-shaped robot

s

10

Robot Motion Planning

t

1. Transform problem to motion-planning problem for a point-shaped robot

s

10

Robot Motion Planning

t

1. Transform problem to motion-planning problem for a point-shaped robot

s

11

Robot Motion Planning

t

1. Transform problem to motion-planning problem for a point-shaped robot
by expanding each obstacle. (Expanded obstacles can intersect!)

s

12

Robot Motion Planning

t

1. Transform problem to motion-planning problem for a point-shaped robot
by expanding each obstacle. (Expanded obstacles can intersect!)

2. Decompose free space into “quadrilaterals”

s

13

Robot Motion Planning

t

1. Transform problem to motion-planning problem for a point-shaped robot
by expanding each obstacle. (Expanded obstacles can intersect!)

2. Decompose free space into “quadrilaterals”

3. Construct motion graph G and compute path from s to t in G

s

14

Robot Motion Planning

reachable region of the robot
=

single cell in arrangement induced by a set S of n curves in R2

for other types of robots: in Rd, where d = #(degrees of freedom)

15

The Complexity of (Substructures in) Arrangements

zone k-level

upper envelope single cell

k-level

A(S) := arrangement of set S of n line/segments/curves in R2

(or: hyperplanes/(d− 1)-simplices/surface patches in Rd)

what is the worst-case complexity of these substructures inA(S)?

16

Theorem. Let S be a set of n simple curves such that any two curves
intersect at most s times, where S is a fixed constant. Then the
complexity of the full arrangement A(S) is O(n2).

The Complexity of Arrangements

17

Proof.

Theorem. Let S be a set of n simple curves such that any two curves
intersect at most s times, where S is a fixed constant. Then the
complexity of the full arrangement A(S) is O(n2).

Assume curves are finite.

• number of vertices

• number of edges

• number of faces

The Complexity of Arrangements

17

Proof.

Theorem. Let S be a set of n simple curves such that any two curves
intersect at most s times, where S is a fixed constant. Then the
complexity of the full arrangement A(S) is O(n2).

Assume curves are finite.

• number of vertices

• number of edges

• number of faces

|V | 6 2n+ s ·
(
n
2

)
= O(n2)

The Complexity of Arrangements

17

Proof.

Theorem. Let S be a set of n simple curves such that any two curves
intersect at most s times, where S is a fixed constant. Then the
complexity of the full arrangement A(S) is O(n2).

Assume curves are finite.

• number of vertices

• number of edges

• number of faces

|V | 6 2n+ s ·
(
n
2

)
= O(n2)

|E| 6 n · (s(n− 1) + 1) = O(n2)

The Complexity of Arrangements

17

Proof.

Theorem. Let S be a set of n simple curves such that any two curves
intersect at most s times, where S is a fixed constant. Then the
complexity of the full arrangement A(S) is O(n2).

Assume curves are finite.

• number of vertices

• number of edges

• number of faces

|V | 6 2n+ s ·
(
n
2

)
= O(n2)

|E| 6 n · (s(n− 1) + 1) = O(n2)

Euler’s formula:

|V | − |E|+ |F | = 2

The Complexity of Arrangements

18

The Complexity of Upper Envelopes

analysis using Davenport-Schinzel sequences

19

Lecture Overview

DS-sequences
and upper
envelopes

levels and the
Clarkson-Shor
technique

eliminating
depth-order

cycles

partitioning
arrangements

substructures in
arrangements

20

Lecture Overview

levels and the
Clarkson-Shor
technique

eliminating
depth-order

cycles

partitioning
arrangements

substructures in
arrangements

DS-sequences
and upper
envelopes

21

Davenport-Schinzel sequences

Harold Davenport
(1907–1965)

Andrzej Schinzel
(1937–2021)

A combinatorial problem

Consider a sequence over the alphabet
{1, . . . , n} such that

• . . . i i . . . does not appear

• . . . i . . . j . . . i . . . j . . . does not appear

How long can such a sequence be?
American Journal of Mathematics 87:684–694 (1965)

s+ 2 times

22

Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence
that does not contain the following:

• . . . i i . . . no two consecutive symbols are the same

• . . . i . . . j . . . i . . . j . . . no alternating subsequence of length s+ 2

s+ 2 times

Example (n = 9, s = 2)

• 6, 4, 5, 6, 1, 2, 2, 7, 3

• 2, 5, 1, 2, 7, 8, 7, 1, 3, 4

• 3, 6, 4, 2, 5, 1, 5, 9, 8, 9, 7

22

Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence
that does not contain the following:

• . . . i i . . . no two consecutive symbols are the same

• . . . i . . . j . . . i . . . j . . . no alternating subsequence of length s+ 2

s+ 2 times

Example (n = 9, s = 2)

• 6, 4, 5, 6, 1, 2, 2, 7, 3

• 2, 5, 1, 2, 7, 8, 7, 1, 3, 4

• 3, 6, 4, 2, 5, 1, 5, 9, 8, 9, 7

22

Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence
that does not contain the following:

• . . . i i . . . no two consecutive symbols are the same

• . . . i . . . j . . . i . . . j . . . no alternating subsequence of length s+ 2

s+ 2 times

Example (n = 9, s = 2)

• 6, 4, 5, 6, 1, 2, 2, 7, 3

• 2, 5, 1, 2, 7, 8, 7, 1, 3, 4

• 3, 6, 4, 2, 5, 1, 5, 9, 8, 9, 7

22

Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence
that does not contain the following:

• . . . i i . . . no two consecutive symbols are the same

• . . . i . . . j . . . i . . . j . . . no alternating subsequence of length s+ 2

s+ 2 times

Example (n = 9, s = 2)

• 6, 4, 5, 6, 1, 2, 2, 7, 3

• 2, 5, 1, 2, 7, 8, 7, 1, 3, 4

• 3, 6, 4, 2, 5, 1, 5, 9, 8, 9, 7

22

Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence
that does not contain the following:

• . . . i i . . . no two consecutive symbols are the same

• . . . i . . . j . . . i . . . j . . . no alternating subsequence of length s+ 2

s+ 2 times

Example (n = 9, s = 2)

• 6, 4, 5, 6, 1, 2, 2, 7, 3

• 2, 5, 1, 2, 7, 8, 7, 1, 3, 4

• 3, 6, 4, 2, 5, 1, 5, 9, 8, 9, 7

Exercise: Determine the maximal possible length of a DS-sequence of
order s as a function of n, for s = 1, s = 2, s = 3, . . .

23

Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence
that does not contain the following:

• . . . i i . . . no two consecutive symbols are the same

• . . . i . . . j . . . i . . . j . . . no alternating subsequence of length s+ 2

s+ 2 times

23

Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence
that does not contain the following:

• . . . i i . . . no two consecutive symbols are the same

• . . . i . . . j . . . i . . . j . . . no alternating subsequence of length s+ 2

s+ 2 times

DSs(n) := maximum length of DS-sequence of order s on n symbols

• s = 1:

• s = 2:

23

Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence
that does not contain the following:

• . . . i i . . . no two consecutive symbols are the same

• . . . i . . . j . . . i . . . j . . . no alternating subsequence of length s+ 2

s+ 2 times

DSs(n) := maximum length of DS-sequence of order s on n symbols

• s = 1:

• s = 2:

=⇒ DS1(n) = npossible sequence: 1, 2, 3, . . . , n
no symbol can appear twice

23

Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence
that does not contain the following:

• . . . i i . . . no two consecutive symbols are the same

• . . . i . . . j . . . i . . . j . . . no alternating subsequence of length s+ 2

s+ 2 times

DSs(n) := maximum length of DS-sequence of order s on n symbols

• s = 1:

• s = 2:

=⇒ DS1(n) = npossible sequence: 1, 2, 3, . . . , n
no symbol can appear twice

possible sequence 1, 2, . . . , n− 1, n, n− 1, . . . , 2, 1

=⇒ DS2(n) > 2n− 1

Proof by induction, remove symbol whose first occurrence is last,
plus at most one adjacent symbol:

DS2(n) 6 DS(n− 1) + 2 =⇒ DS2(n) 6 2n− 1

24

Davenport-Schinzel sequences

Theorem. DSs(n) is near-linear for any constant s. In particular,

• DS1(n) = n

• DS2(n) = 2n− 1

• DS3(n) = Θ(nα(n))

• DSs(n) = o(n log∗ n) for any fixed constant s

where α(n) is the inverse Ackermann function

α(n) is inverse of Ackermann function A(n), where A(n) = An(n) with:

A1(n) = 2n for n > 1
Ak(1) = 2 for k > 1
Ak(n) = Ak−1(Ak(n− 1)) for k > 2 and n > 2

A(1) = 2, A(2) = 4, A(3) = 16, A(4) = tower of 65536 2’s

α(n) grows slower than super-super-super-super-super-slowly . . .

25

The Complexity of Upper Envelopes

back to upper envelopes

26

The Complexity of Upper Envelopes

Theorem. Let S be a set of n infinite x-monotone curves such that any
two curves intersect at most s times. Then the maximum complexity of
the upper envelope of S is O(DSs(n)).

Proof.

1

2

3

4

for example: O(n) for lines

26

The Complexity of Upper Envelopes

Theorem. Let S be a set of n infinite x-monotone curves such that any
two curves intersect at most s times. Then the maximum complexity of
the upper envelope of S is O(DSs(n)).

Proof.

1

2

3

4

1 12 2

3
4

1

for example: O(n) for lines

26

The Complexity of Upper Envelopes

Theorem. Let S be a set of n infinite x-monotone curves such that any
two curves intersect at most s times. Then the maximum complexity of
the upper envelope of S is O(DSs(n)).

Proof.

1

2

3

4

1 12 2

3
4

1

alternating sequence of length t
implies t− 1 intersections

i j i

for example: O(n) for lines

26

The Complexity of Upper Envelopes

Theorem. Let S be a set of n infinite x-monotone curves such that any
two curves intersect at most s times. Then the maximum complexity of
the upper envelope of S is O(DSs(n)).

we cannot have alternating
sequence of length s+ 2

=⇒ DS(n, s)-sequence

Proof.

1

2

3

4

1 12 2

3
4

1

alternating sequence of length t
implies t− 1 intersections

i j i

for example: O(n) for lines

27

The Complexity of Upper Envelopes

Theorem. Let S be a set of n infinite x-monotone curves such that any
two curves intersect at most s times. Then the maximum complexity of
the upper envelope of S is O(DSs+2(n)).

for example: O(nα(n)) for line segments

27

The Complexity of Upper Envelopes

Theorem. Let S be a set of n infinite x-monotone curves such that any
two curves intersect at most s times. Then the maximum complexity of
the upper envelope of S is O(DSs+2(n)).

Proof.
for example: O(nα(n)) for line segments

27

The Complexity of Upper Envelopes

Theorem. Let S be a set of n infinite x-monotone curves such that any
two curves intersect at most s times. Then the maximum complexity of
the upper envelope of S is O(DSs+2(n)).

Proof.

alternating sequence of length t
implies t− 1 intersections

i j ji

t− 3

for example: O(nα(n)) for line segments

27

The Complexity of Upper Envelopes

Theorem. Let S be a set of n infinite x-monotone curves such that any
two curves intersect at most s times. Then the maximum complexity of
the upper envelope of S is O(DSs+2(n)).

Proof.

alternating sequence of length t
implies t− 1 intersections

i j ji

t− 3
we cannot have alternating
sequence of length s+ 4

=⇒ DS(n, s+ 2)-sequence

for example: O(nα(n)) for line segments

28

Upper Envelopes: Applications for Moving Ponits

P : set of n points in R2 that move linearly (or: on polynomial trajectories)

• How often can the closest pair change, in the worst case?

• How often can the convex hull change, in the worst case?

• How often can the Delaunay triangulation change, in the worst case?

29

Upper Envelopes: Applications for Moving Ponits

How often can the closest pair change, in the worst case?

29

Upper Envelopes: Applications for Moving Ponits

How often can the closest pair change, in the worst case?

Lower bound

29

Upper Envelopes: Applications for Moving Ponits

How often can the closest pair change, in the worst case?

Lower bound

Ω(n2) changes

30

Upper Envelopes: Applications for Moving Ponits

How often can the closest pair change, in the worst case?

Upper bound

30

Upper Envelopes: Applications for Moving Ponits

How often can the closest pair change, in the worst case?

Upper bound

• for each pair p, q define fpq(t) := distance between p and q at time t

• number of changes = complexity of lower envelope of n2 functions

≈ O(n2)

31

Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

Lower bound

31

Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

Lower bound

Ω(n2) changes

32

Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

Trivial upper bound

32

Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

Trivial upper bound

convex hull changes =⇒ three points become collinear

=⇒ happens O(1) times for each triple

=⇒ O(n3) changes to convex hull

33

Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

A better bound using upper envelopes

33

Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

A better bound using upper envelopes

• for each point p define function fp : [0, 2π)× R>0 → R

θ

f p
(θ
, t

)

p

34

Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

A better bound using upper envelopes

• for each point p define function fp : [0, π)× R>0 → R

• p on convex hull at time t iff (there is a θ such that fp(θ, t) > fq(θ, t)
for all q at time t) or (. . .6 . . .)

θ

f p
(θ
, t

)

p

34

Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

A better bound using upper envelopes

• for each point p define function fp : [0, π)× R>0 → R

• p on convex hull at time t iff (there is a θ such that fp(θ, t) > fq(θ, t)
for all q at time t) or (. . .6 . . .)

θ

f p
(θ
, t

)

p

• number of changes

= O(complexity of upper envelope of surfaces in R3) = O(n2+ε)

35

Theorem. Let S be a set of n curves in the plane such that any two
curves intersect at most s times. Then the maximum complexity of a
single cell of A(S) is O(DSs+2(n)).

The Complexity of Single Cells

proof also uses Davenport-Schinzel sequences but is more complicated

for example: O(nα(n)) for line segments

36

Lecture Overview

levels and the
Clarkson-Shor
technique

eliminating
depth-order

cycles

partitioning
arrangements

substructures in
arrangements

DS-sequences
and upper
envelopes

37

Lecture Overview

eliminating
depth-order

cycles

partitioning
arrangements

substructures in
arrangements

DS-sequences
and upper
envelopes

levels and the
Clarkson-Shor
technique

38

Levels in arrangements

38

Levels in arrangements

0-level

39

Levels in arrangements

1-level

40

Levels in arrangements

2-level

41

Levels in arrangements

(6 2)-level

42

Levels in arrangements

What is the max complexity of the k-level in an arrangement of n lines?

• 0-level = lower envelope =⇒ complexity 6 n

• k > 1: complexity is n2Ω(
√

log k) and O(nk1/3) major open problem

43

The Clarkson-Shor Technique: Application to (6 k)-levels

What is the max complexity of the (6 k)-level in an arrangement of n lines?

43

The Clarkson-Shor Technique: Application to (6 k)-levels

What is the max complexity of the (6 k)-level in an arrangement of n lines?

Clarkson-Shor ’89: Θ(nk)

• in Rd: Θ(nbd/2ckbd/2c)

• bound for d = 2 was already known

44

Theorem. The max complexity of the (6 k)-level in an arrangement
induced by a set L of n lines in the plane is O(nk).

The Clarkson-Shor Technique: Application to (6 k)-levels

44

Theorem. The max complexity of the (6 k)-level in an arrangement
induced by a set L of n lines in the plane is O(nk).

Proof.

The Clarkson-Shor Technique: Application to (6 k)-levels

44

Theorem. The max complexity of the (6 k)-level in an arrangement
induced by a set L of n lines in the plane is O(nk).

Proof.

Take sample R ⊂ L by picking each line ` ∈ L with probability 1/k.

The Clarkson-Shor Technique: Application to (6 k)-levels

44

Theorem. The max complexity of the (6 k)-level in an arrangement
induced by a set L of n lines in the plane is O(nk).

Proof.

Take sample R ⊂ L by picking each line ` ∈ L with probability 1/k.

E
[
complexity of 0-level of R

]
6 E

[
|R|

]
= n/k

The Clarkson-Shor Technique: Application to (6 k)-levels

44

Theorem. The max complexity of the (6 k)-level in an arrangement
induced by a set L of n lines in the plane is O(nk).

Proof.

Take sample R ⊂ L by picking each line ` ∈ L with probability 1/k.

E
[
complexity of 0-level of R

]
6 E

[
|R|

]
= n/k

v

6 k lines

vertex of k-level of L shows up on 0-level of R iff

• both lines defining v are in R

• none of the at most k lines below v are in R

The Clarkson-Shor Technique: Application to (6 k)-levels

44

Theorem. The max complexity of the (6 k)-level in an arrangement
induced by a set L of n lines in the plane is O(nk).

Proof.

Take sample R ⊂ L by picking each line ` ∈ L with probability 1/k.

E
[
complexity of 0-level of R

]
6 E

[
|R|

]
= n/k

v

6 k lines

vertex of k-level of L shows up on 0-level of R iff

• both lines defining v are in R

• none of the at most k lines below v are in R

prob >
(

1
k

)2 ·
(
1− 1

k

)k
>

(
1
k

)2 · 1
e

The Clarkson-Shor Technique: Application to (6 k)-levels

44

Theorem. The max complexity of the (6 k)-level in an arrangement
induced by a set L of n lines in the plane is O(nk).

Proof.

Take sample R ⊂ L by picking each line ` ∈ L with probability 1/k.

E
[
complexity of 0-level of R

]
6 E

[
|R|

]
= n/k

v

6 k lines

vertex of k-level of L shows up on 0-level of R iff

• both lines defining v are in R

• none of the at most k lines below v are in R

prob >
(

1
k

)2 ·
(
1− 1

k

)k
>

(
1
k

)2 · 1
e

E
[
complexity of 0-level of R

]
> (complexity of k-level in L) ·

(
1
k

)2 · 1
e

The Clarkson-Shor Technique: Application to (6 k)-levels

45

Overview of Complexity of Substructures in Arrangements in R2

zone

k-level

upper envelope

single cell

k-level

Θ(n2)

Θ(nα(n))

full arrangement

upper envelope (segments)

single cell (segments)

zone (lines)

k-level (lines)

(6 k)-level (lines)

Θ(n)

Θ(nα(n))

Θ(nk)

O(nk1/3) n2Ω(
√

log k)

46

Lecture Overview

eliminating
depth-order

cycles

partitioning
arrangements

substructures in
arrangements

DS-sequences
and upper
envelopes

levels and the
Clarkson-Shor
technique

47

Lecture Overview

substructures in
arrangements

DS-sequences
and upper
envelopes

levels and the
Clarkson-Shor
technique

partitioning
arrangements

eliminating
depth-order

cycles

48

Point Location in Arrangements

• divide-and-conquer: important algorithmic design technique

• for geometric problems: perform divide step by partitioning space

48

Point Location in Arrangements

• divide-and-conquer: important algorithmic design technique

• for geometric problems: perform divide step by partitioning space

Example: point location in arrangements

Store lines in data structure such that
we can find the cell containing a query
point q in O(log n) time

48

Point Location in Arrangements

• divide-and-conquer: important algorithmic design technique

• for geometric problems: perform divide step by partitioning space

Example: point location in arrangements

Store lines in data structure such that
we can find the cell containing a query
point q in O(log n) time

48

Point Location in Arrangements

• divide-and-conquer: important algorithmic design technique

• for geometric problems: perform divide step by partitioning space

Example: point location in arrangements

Store lines in data structure such that
we can find the cell containing a query
point q in O(log n) time

Idea

• Partition plane into small
number of regions

• Find region containing
query point q

• Recursively find cell
containing q within region

49

Point Location in Arrangements

• divide-and-conquer: important algorithmic design technique

• for geometric problems: perform divide step by partitioning space

Example: point location in arrangements

Store lines in data structure such that
we can find the cell containing a query
point q in O(log n) time

49

Point Location in Arrangements

• divide-and-conquer: important algorithmic design technique

• for geometric problems: perform divide step by partitioning space

Example: point location in arrangements

Store lines in data structure such that
we can find the cell containing a query
point q in O(log n) time

49

Point Location in Arrangements

• divide-and-conquer: important algorithmic design technique

• for geometric problems: perform divide step by partitioning space

Example: point location in arrangements

Store lines in data structure such that
we can find the cell containing a query
point q in O(log n) time

50

Point Location in Arrangements

Analysis

Suppose each region intersects at most n/r lines, for some constant r

• query time:

• storage:

50

Point Location in Arrangements

Analysis

Suppose each region intersects at most n/r lines, for some constant r

• query time:

• storage:

Q(n) = O(r) +Q(n/r) =⇒ Q(n) = O(log n)

50

Point Location in Arrangements

Analysis

Suppose each region intersects at most n/r lines, for some constant r

• query time:

• storage:

Q(n) = O(r) +Q(n/r) =⇒ Q(n) = O(log n)

S(n) = (number of regions) · S(n/r)

50

Point Location in Arrangements

Analysis

Suppose each region intersects at most n/r lines, for some constant r

• query time:

• storage:

Q(n) = O(r) +Q(n/r) =⇒ Q(n) = O(log n)

S(n) = (number of regions) · S(n/r)

(number of regions) = O(r2) =⇒ S(n) = O(n2+ε)

51

Partitioning Arrangements: Basic Results

(1/r)-cutting for set L of n lines in R2

partitioning of R2 into (possibly unbounded)
triangles ∆i such that each ∆i intersects
only n/r lines

51

Partitioning Arrangements: Basic Results

(1/r)-cutting for set L of n lines in R2

partitioning of R2 into (possibly unbounded)
triangles ∆i such that each ∆i intersects
only n/r lines

Theorem. For any set L of n lines in R2 and any r with 1 6 r 6 n
there is a (1/r)-cutting consisting of O(r2) triangles.

51

Partitioning Arrangements: Basic Results

(1/r)-cutting for set L of n lines in R2

partitioning of R2 into (possibly unbounded)
triangles ∆i such that each ∆i intersects
only n/r lines

Theorem. For any set L of n lines in R2 and any r with 1 6 r 6 n
there is a (1/r)-cutting consisting of O(r2) triangles.

Theorem. For any set L of n hyperplanes in Rd and any r with 1 6 r 6 n
there is a (1/r)-cutting consisting of O(rd) simplices.

52

Partitioning Arrangements: Basic Results

fine simplicial partition for set P of n points in R2

collection {(P1,∆1), . . . , (Pr,∆r)} where

• P = P1 ∪ . . . ∪ Pr and Pi’s are disjoint

• ∆i is triangle containing Pi

• n/(2r) 6 |Pi| 6 2n/r

52

Partitioning Arrangements: Basic Results

fine simplicial partition for set P of n points in R2

collection {(P1,∆1), . . . , (Pr,∆r)} where

• P = P1 ∪ . . . ∪ Pr and Pi’s are disjoint

• ∆i is triangle containing Pi

• n/(2r) 6 |Pi| 6 2n/r

Theorem. For any set P of n points in R2 and any r with 1 6 r 6 n
there is a fine simplicial partition of O(r) triangles such that any line
crosses O(

√
r) triangles.

52

Partitioning Arrangements: Basic Results

fine simplicial partition for set P of n points in R2

collection {(P1,∆1), . . . , (Pr,∆r)} where

• P = P1 ∪ . . . ∪ Pr and Pi’s are disjoint

• ∆i is triangle containing Pi

• n/(2r) 6 |Pi| 6 2n/r

Theorem. For any set P of n points in R2 and any r with 1 6 r 6 n
there is a fine simplicial partition of O(r) triangles such that any line
crosses O(

√
r) triangles.

Theorem. For any set P of n points in Rd and any r with 1 6 r 6 n
there is a fine simplicial partition of O(r) simplices such that any
hyperplane crosses O(r1−1/d) simplices.

53

Partitioning Arrangements: Basic Results

Cuttings (and simplicial partitions) form the basis of data structures for

• point location

• range searching

• ray shooting

and of many other algorithmic and combinatorial results

54

Polynomial Partitions

Basic polynomial partitions [Guth-Katz’10]

• P = set of n points in Rd

• D = parameter (can depend on n)

Theorem. There exists a surface Z(f) that is the zero-set of a
polynomial of degree at most D such that Rd \ Z(f) consists of
O(Dd) cells each containing O(n/Dd) points from P .

54

Polynomial Partitions

Basic polynomial partitions [Guth-Katz’10]

• P = set of n points in Rd

• D = parameter (can depend on n)

Theorem. There exists a surface Z(f) that is the zero-set of a
polynomial of degree at most D such that Rd \ Z(f) consists of
O(Dd) cells each containing O(n/Dd) points from P .

Used to (basically) solve

Erdős distinct-distances problem:

any set of n points in the plane
defines Ω(n/ log n) distinct distances

55

Polynomial Partitions

Generalization of polynomial partitions [Guth’15]

• L = set of n lines in Rd

• D = parameter (can depend on n)

Theorem. There exists a surface Z(f) that is the zero-set of a
polynomial of degree at most D such that Rd \ Z(f) consists of
O(Dd) cells each intersecting O(n/Dd−1) lines from L.

55

Polynomial Partitions

Generalization of polynomial partitions [Guth’15]

• L = set of n lines in Rd

• D = parameter (can depend on n)

Theorem. There exists a surface Z(f) that is the zero-set of a
polynomial of degree at most D such that Rd \ Z(f) consists of
O(Dd) cells each intersecting O(n/Dd−1) lines from L.

for lines in R3 we get O(D3) cells, each intersecting O(n/D2) lines

55

Polynomial Partitions

Generalization of polynomial partitions [Guth’15]

• L = set of n lines in Rd

• D = parameter (can depend on n)

Theorem. There exists a surface Z(f) that is the zero-set of a
polynomial of degree at most D such that Rd \ Z(f) consists of
O(Dd) cells each intersecting O(n/Dd−1) lines from L.

for lines in R3 we get O(D3) cells, each intersecting O(n/D2) lines

(result is actually even more general)

56

Lecture Overview

substructures in
arrangements

DS-sequences
and upper
envelopes

levels and the
Clarkson-Shor
technique

partitioning
arrangements

eliminating
depth-order

cycles

57

Lecture Overview

substructures in
arrangements

DS-sequences
and upper
envelopes

levels and the
Clarkson-Shor
technique

partitioning
arrangements

eliminating
depth-order

cycles

58

Depth orders

S: set of n disjoint triangles (or other objects) in R3

T is below T ′ (notation: T ≺ T ′):

there is a vertical line ` such that
` ∩ T has smaller z-coordinate than ` ∩ T ′

depth order on S: ordering T1, . . . , Tn consistent with ≺

58

Depth orders

S: set of n disjoint triangles (or other objects) in R3

T is below T ′ (notation: T ≺ T ′):

there is a vertical line ` such that
` ∩ T has smaller z-coordinate than ` ∩ T ′

depth order on S: ordering T1, . . . , Tn consistent with ≺

Applications

• computer graphics (Painter’s Algorithm)

• computer-aided design and manufacturing (assembly sequences)

59

Depth orders

Depth order need not exist, due to cyclic overlap

Questions:

• Decide if a given order T1, . . . , Tn is a valid depth order.

• Compute a depth order, or decide that none exists.

• How many cuts are needed, in the worst case, to eliminate all cycles?

59

Depth orders

Depth order need not exist, due to cyclic overlap

Questions:

• Decide if a given order T1, . . . , Tn is a valid depth order.

• Compute a depth order, or decide that none exists.

• How many cuts are needed, in the worst case, to eliminate all cycles?

cut

60

The number of cuts to eliminate all cycles

For line segments in R3

• we can eliminate all cycles using O(n2) cuts

cut each line between any two
adjacent intersections in projection

60

The number of cuts to eliminate all cycles

For line segments in R3

• we can eliminate all cycles using O(n2) cuts

cut each line between any two
adjacent intersections in projection

for triangles we can also eliminate
all cycles with O(n2) cuts, with a
more complicated procedure

60

The number of cuts to eliminate all cycles

For line segments in R3

• we can eliminate all cycles using O(n2) cuts

cut each line between any two
adjacent intersections in projection

for triangles we can also eliminate
all cycles with O(n2) cuts, with a
more complicated procedure

• in the worst case Ω(n3/2) cuts may be needed

three groups of
√
n×
√
n

segments each

61

The number of cuts to eliminate all cycles

Can we do better than O(n2) cuts?

61

The number of cuts to eliminate all cycles

Can we do better than O(n2) cuts?

• O(n9/4) for bipartite weavings of line segments
[Chazelle et al., FOCS’91]

• O(n2−1/69 log16/69 n) to get rid of triangular cycles for lines
[Aronov,Koltun,Sharir STOC’03]

61

The number of cuts to eliminate all cycles

Can we do better than O(n2) cuts?

• O(n9/4) for bipartite weavings of line segments
[Chazelle et al., FOCS’91]

• O(n2−1/69 log16/69 n) to get rid of triangular cycles for lines
[Aronov,Koltun,Sharir STOC’03]

And then a breakthroughs happened

• O(n3/2 polylog n) for line segments
[Aronov-Sharir STOC’16]

• O(n3/2+ε) for triangles
[Aronov-Miller-Sharir SODA’17]

61

The number of cuts to eliminate all cycles

Can we do better than O(n2) cuts?

• O(n9/4) for bipartite weavings of line segments
[Chazelle et al., FOCS’91]

• O(n2−1/69 log16/69 n) to get rid of triangular cycles for lines
[Aronov,Koltun,Sharir STOC’03]

And then a breakthroughs happened

• O(n3/2 polylog n) for line segments
[Aronov-Sharir STOC’16]

• O(n3/2+ε) for triangles
[Aronov-Miller-Sharir SODA’17]

technique uses
polynomial partitions

61

The number of cuts to eliminate all cycles

Can we do better than O(n2) cuts?

• O(n9/4) for bipartite weavings of line segments
[Chazelle et al., FOCS’91]

• O(n2−1/69 log16/69 n) to get rid of triangular cycles for lines
[Aronov,Koltun,Sharir STOC’03]

And then a breakthroughs happened

• O(n3/2 polylog n) for line segments
[Aronov-Sharir STOC’16]

• O(n3/2+ε) for triangles
[Aronov-Miller-Sharir SODA’17]

technique uses
polynomial partitions

combines Aronov-Sharir result
with cuttings

• O(n7/4 polylog n) for triangles,
with straight-line cuts [dB, FOCS’18]

uses curved cuts

62

Polynomial Partitions for Lines in R3

62

Polynomial Partitions for Lines in R3

• L = set of n lines, or line segments, in R3

• D = parameter

Theorem. There exists a surface Z(f) that is the zero-set of a polynomial
of degree at most D such that Rd \ Z(f) consists of O(D3) cells each
intersecting O(n/D2) lines from L.

63

1. Take polynomial partition Z(f) of degree D, for suitable D.

2. For each line segment ` ∈ L (with ` 6⊂ Z(f)) do the following:

The Aronov-Sharir approach for line segments

63

1. Take polynomial partition Z(f) of degree D, for suitable D.

2. For each line segment ` ∈ L (with ` 6⊂ Z(f)) do the following:

The Aronov-Sharir approach for line segments

(i) Cut ` at every point where ` intersects Z(f). O(D) cuts

(ii) Take vertical plane h(`) containing `. Cut ` at points below vertical
tangencies of h(`) ∩ Z(f) and points below singularities.

O(D2) cuts

type (i) cut
(i)

type (ii) cut

63

1. Take polynomial partition Z(f) of degree D, for suitable D.

2. For each line segment ` ∈ L (with ` 6⊂ Z(f)) do the following:

The Aronov-Sharir approach for line segments

(i) Cut ` at every point where ` intersects Z(f). O(D) cuts

(ii) Take vertical plane h(`) containing `. Cut ` at points below vertical
tangencies of h(`) ∩ Z(f) and points below singularities.

O(D2) cuts

3. Recursively cut lines within each cell.

type (i) cut
(i)

type (ii) cut

64

Lemma. Procedure eliminates all cycles.

The Aronov-Sharir approach for line segments

64

Lemma. Procedure eliminates all cycles.

The Aronov-Sharir approach for line segments

Proof. Suppose for a contradiction that there is still a cycle

64

Lemma. Procedure eliminates all cycles.

The Aronov-Sharir approach for line segments

Proof. Suppose for a contradiction that there is still a cycle

• associate 3D polygonal curve Γ to cycle

64

Lemma. Procedure eliminates all cycles.

The Aronov-Sharir approach for line segments

Proof. Suppose for a contradiction that there is still a cycle

• associate 3D polygonal curve Γ to cycle

• if Γ lies completely inside cell of R3 \ Z(f)
then cycles are removed by induction

64

Lemma. Procedure eliminates all cycles.

The Aronov-Sharir approach for line segments

Proof. Suppose for a contradiction that there is still a cycle

• associate 3D polygonal curve Γ to cycle

• if Γ lies completely inside cell of R3 \ Z(f)
then cycles are removed by induction

• otherwise consider how level (number of
intersection of upward ray with Z(f))
changes as we walk along Γ

(i)

65

Lemma. Procedure makes O(n3/2 polylog n) cuts.

The Aronov-Sharir approach for line segments

65

Lemma. Procedure makes O(n3/2 polylog n) cuts.

The Aronov-Sharir approach for line segments

Proof. C(n) = O(D3) · C(n/D2) +O(nD2)

D := Θ(n1/4) =⇒ C(n) = O(n3/2 polylog n)

65

Lemma. Procedure makes O(n3/2 polylog n) cuts.

The Aronov-Sharir approach for line segments

Proof. C(n) = O(D3) · C(n/D2) +O(nD2)

D := Θ(n1/4) =⇒ C(n) = O(n3/2 polylog n)

• similar but much more complicated approach works for triangles

• triangles are cut by polynomial, so pieces have curved boundaries

66

Key idea: Relate depth order for triangles to depth order of its edges

Avoiding curved cuts for triangles

66

Key idea: Relate depth order for triangles to depth order of its edges

Avoiding curved cuts for triangles

• T = set of n triangles in R3

• E = set of 3n edges of the triangles

• C = vertical, triangular column

Lemma. If C does not contain any triangle vertex in its interior and
E ∩ C is acyclic, then T ∩ C is acyclic.

67

• T = set of n triangles in R3, E = set of 3n triangle edges

Lemma. If C does not contain any triangle vertex in its interior and
E ∩ C is acyclic, then T ∩ C is acyclic.

Avoiding curved cuts for triangles

67

• T = set of n triangles in R3, E = set of 3n triangle edges

Lemma. If C does not contain any triangle vertex in its interior and
E ∩ C is acyclic, then T ∩ C is acyclic.

How to use the lemma (failed approach)

1. Compute complete cut set X for E
of size of O(n3/2 polylog n).

Avoiding curved cuts for triangles

67

• T = set of n triangles in R3, E = set of 3n triangle edges

Lemma. If C does not contain any triangle vertex in its interior and
E ∩ C is acyclic, then T ∩ C is acyclic.

How to use the lemma (failed approach)

1. Compute complete cut set X for E
of size of O(n3/2 polylog n).

Avoiding curved cuts for triangles

68

• T = set of n triangles in R3, E = set of 3n triangle edges

Lemma. If C does not contain any triangle vertex in its interior and
E ∩ C is acyclic, then T ∩ C is acyclic.

Trivial approach:

1. Compute complete cut set X for E
of size of O(n3/2 polylog n).

2. P := {triangle vertices} ∪X.

Avoiding curved cuts for triangles

68

• T = set of n triangles in R3, E = set of 3n triangle edges

Lemma. If C does not contain any triangle vertex in its interior and
E ∩ C is acyclic, then T ∩ C is acyclic.

Trivial approach:

1. Compute complete cut set X for E
of size of O(n3/2 polylog n).

2. P := {triangle vertices} ∪X.

Avoiding curved cuts for triangles

69

• T = set of n triangles in R3, E = set of 3n triangle edges

Lemma. If C does not contain any triangle vertex in its interior and
E ∩ C is acyclic, then T ∩ C is acyclic.

Trivial approach:

1. Compute complete cut set X for E
of size of O(n3/2 polylog n).

2. P := {triangle vertices} ∪X.
hp := vertical plane through p
HP := {hp : p ∈ P}.

Avoiding curved cuts for triangles

70

• T = set of n triangles in R3, E = set of 3n triangle edges

Lemma. If C does not contain any triangle vertex in its interior and
E ∩ C is acyclic, then T ∩ C is acyclic.

Trivial approach:

1. Compute complete cut set X for E
of size of O(n3/2 polylog n).

2. P := {triangle vertices} ∪X.
hp := vertical plane through p
HP := {hp : p ∈ P}. p

hp

Avoiding curved cuts for triangles

71

• T = set of n triangles in R3, E = set of 3n triangle edges

Lemma. If C does not contain any triangle vertex in its interior and
E ∩ C is acyclic, then T ∩ C is acyclic.

Trivial approach:

1. Compute complete cut set X for E
of size of O(n3/2 polylog n).

2. P := {triangle vertices} ∪X.
hp := vertical plane through p
HP := {hp : p ∈ P}.

3. Cut all triangles with planes in Hp

=⇒ Removes all cycles

p
hp

Avoiding curved cuts for triangles

71

• T = set of n triangles in R3, E = set of 3n triangle edges

Lemma. If C does not contain any triangle vertex in its interior and
E ∩ C is acyclic, then T ∩ C is acyclic.

Trivial approach:

1. Compute complete cut set X for E
of size of O(n3/2 polylog n).

2. P := {triangle vertices} ∪X.
hp := vertical plane through p
HP := {hp : p ∈ P}.

3. Cut all triangles with planes in Hp

=⇒ Removes all cycles

p
hp

but may result in O(n2.5 polylog n) fragments.

Avoiding curved cuts for triangles

71

• T = set of n triangles in R3, E = set of 3n triangle edges

Lemma. If C does not contain any triangle vertex in its interior and
E ∩ C is acyclic, then T ∩ C is acyclic.

Trivial approach:

1. Compute complete cut set X for E
of size of O(n3/2 polylog n).

2. P := {triangle vertices} ∪X.
hp := vertical plane through p
HP := {hp : p ∈ P}.

3. Cut all triangles with planes in Hp

=⇒ Removes all cycles

p
hp

but may result in O(n2.5 polylog n) fragments.

Avoiding curved cuts for triangles

using hierarchical gives O(n7/4 polylog n) fragments.

72

Lecture Overview

substructures in
arrangements

DS-sequences
and upper
envelopes

levels and the
Clarkson-Shor
technique

partitioning
arrangements

eliminating
depth-order

cycles

73

Lecture Overview

substructures in
arrangements

DS-sequences
and upper
envelopes

levels and the
Clarkson-Shor
technique

partitioning
arrangements

eliminating
depth-order

cycles

73

Lecture Overview

substructures in
arrangements

DS-sequences
and upper
envelopes

levels and the
Clarkson-Shor
technique

partitioning
arrangements

eliminating
depth-order

cycles

open problem:
eliminate cycles in triangles with
o(n7/4) straight-line cuts

open problem:
complexity of k-level
in line arrangement

74

Thanks for your attention!

TSP Art by Carig Kaplan and Robert Bosch

75TU e

