Smoothed Analysis of Local Search

Jesse van Rhijn

University of Twente

February 8, 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

2-Opt and TSP

	#iterations	approximation ratio
theoretical	$2^{\Omega(n)}$	$O(\log n), \ \Omega(\frac{\log n}{\log \log n})$
	(Englert, Röglin, Vöcking)	(Chandra, Karloff, Tovey)
practical	o(n²) (Johnson, McGeoch)	1.05
		▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二團

Standard measure of algorithm performance.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Formally: $W(n) = \max_{I \in \mathcal{I}_n} T(I)$.

Standard measure of algorithm performance.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Formally: $W(n) = \max_{I \in \mathcal{I}_n} T(I)$.

Standard measure of algorithm performance.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Formally: $W(n) = \max_{I \in \mathcal{I}_n} T(I)$.

Advantage: strong guarantee on performance.

Standard measure of algorithm performance.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Formally: $W(n) = \max_{I \in \mathcal{I}_n} T(I)$.

Advantage: strong guarantee on performance. Disadvantage: may be overly pessimistic.

Possible solution to pessimism.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Formally: $A(n) = \mathbb{E}_{I \sim \pi_n}(T(I)).$

Possible solution to pessimism.

(日) (四) (日) (日) (日)

Formally: $A(n) = \mathbb{E}_{I \sim \pi_n}(T(I)).$

Possible solution to pessimism.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Formally: $A(n) = \mathbb{E}_{I \sim \pi_n}(T(I)).$

Advantage: reduced impact of pathologies.

Possible solution to pessimism.

(日) (四) (日) (日) (日)

Formally: $A(n) = \mathbb{E}_{I \sim \pi_n}(T(I)).$

Advantage: reduced impact of pathologies. Disadvantage: may be unrealistic, choice of π_n .

Average Case Shortcomings

Smoothed Analysis

Smoothed analysis: random perturbations of worst case instances.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Formally: $S(n, \sigma) = \max_{I \in \mathcal{I}_n} \mathbb{E}_{g \sim \pi_\sigma}(T(I, g)).$

Smoothed Analysis

Smoothed analysis: random perturbations of worst case instances.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Formally: $S(n, \sigma) = \max_{I \in \mathcal{I}_n} \mathbb{E}_{g \sim \pi_\sigma}(T(I, g)).$

Smoothed Analysis

Smoothed analysis: random perturbations of worst case instances.

(日) (四) (日) (日) (日)

Formally: $S(n, \sigma) = \max_{I \in \mathcal{I}_n} \mathbb{E}_{g \sim \pi_\sigma}(T(I, g)).$

Combines average case and worst case analysis.

Smoothed Analysis: Original and Perturbed

Moving Between W and A

Smoothed complexity is parametrized by σ .

Allows interpolation between worst/average case.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Moving Between W and A

Smoothed complexity is parametrized by σ .

Allows interpolation between worst/average case.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Most common models of SA:

- Two step model: take an arbitrary input and perturb it (by Gaussians).
- One step model: draw numbers in the input from independent bounded probability densities.

Two step model is parametrized by σ , one step model by $\phi \geq 1$.

Most common models of SA:

Two step model: take an arbitrary input and perturb it (by Gaussians).

 One step model: draw numbers in the input from independent bounded probability densities.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Two step model is parametrized by σ , one step model by $\phi \geq 1$.

Most common models of SA:

- Two step model: take an arbitrary input and perturb it (by Gaussians).
- One step model: draw numbers in the input from independent bounded probability densities.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Two step model is parametrized by σ , one step model by $\phi \geq 1$.

Most common models of SA:

- Two step model: take an arbitrary input and perturb it (by Gaussians).
- One step model: draw numbers in the input from independent bounded probability densities.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Two step model is parametrized by σ , one step model by $\phi \geq 1$.

Most common models of SA:

- Two step model: take an arbitrary input and perturb it (by Gaussians).
- One step model: draw numbers in the input from independent bounded probability densities.

Two step model is parametrized by σ , one step model by $\phi \geq 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Weights: $w(e) \sim f_e$, $w(g) \sim f_g$, etc.

f_e, *f_g* ≤ φ.
w(*e*), *w*(*g*) are independent!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Weights: $w(e) \sim f_e$, $w(g) \sim f_g$, etc.

f_e, *f_g* ≤ φ.
w(e), *w(g)* are independent!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Weights: $w(e) \sim f_e$, $w(g) \sim f_g$, etc.

f_e, *f_g* ≤ φ.
w(*e*), *w*(*g*) are independent!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Weights: $w(e) \sim f_e$, $w(g) \sim f_g$, etc.

f_e, *f_g* ≤ φ.
w(*e*), *w*(*g*) are independent!

Comparing the Models: Weighted Graphs

イロト 不得 トイヨト イヨト

3

Perturbations: usually Gaussian.

Comparing the Models: Weighted Graphs

イロト 不得 トイヨト イヨト

3

Perturbations: usually Gaussian.

Weights: $w(e) = d(x_2, x_3), w(g) = d(x_1, x_2).$

Questions

Intermezzo: questions?

Local search: simple combinatorial optimization paradigm.

For a solution x, define a **neighborhood** N(x) of **better** solutions.

Choose some $y \in N(x)$ as the new solution.

Continue until neighborhood is empty \rightarrow local optimum.

Ingredients:

- Neighborhood: what solutions are neighbors?
- Pivot rule: how to select next solution?
- Initialization: how to compute starting solution?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Cost: how to compare solutions?

Local search: simple combinatorial optimization paradigm.

For a solution x, define a neighborhood N(x) of better solutions.

Choose some $y \in N(x)$ as the new solution.

Continue until neighborhood is empty \rightarrow local optimum.

Ingredients:

- Neighborhood: what solutions are neighbors?
- Pivot rule: how to select next solution?
- Initialization: how to compute starting solution?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Cost: how to compare solutions?

Local search: simple combinatorial optimization paradigm.

For a solution x, define a **neighborhood** N(x) of **better** solutions.

Choose some $y \in N(x)$ as the new solution.

Continue until neighborhood is empty \rightarrow local optimum.

- Neighborhood: what solutions are neighbors?
- Pivot rule: how to select next solution?
- Initialization: how to compute starting solution?
- Cost: how to compare solutions?

Local search: simple combinatorial optimization paradigm.

For a solution x, define a **neighborhood** N(x) of **better** solutions.

Choose some $y \in N(x)$ as the new solution.

Continue until neighborhood is empty \rightarrow local optimum.

Ingredients:

- Neighborhood: what solutions are neighbors?
- Pivot rule: how to select next solution?
- Initialization: how to compute starting solution?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Cost: how to compare solutions?

Local search: simple combinatorial optimization paradigm.

For a solution x, define a **neighborhood** N(x) of **better** solutions.

Choose some $y \in N(x)$ as the new solution.

Continue until neighborhood is empty \rightarrow local optimum.

- Neighborhood: what solutions are neighbors?
- Pivot rule: how to select next solution?
- Initialization: how to compute starting solution?
- Cost: how to compare solutions?

Local search: simple combinatorial optimization paradigm.

For a solution x, define a neighborhood N(x) of better solutions.

Choose some $y \in N(x)$ as the new solution.

Continue until neighborhood is empty \rightarrow local optimum.

- Neighborhood: what solutions are neighbors?
- Pivot rule: how to select next solution?
- Initialization: how to compute starting solution?
- Cost: how to compare solutions?

Local search: simple combinatorial optimization paradigm.

For a solution x, define a **neighborhood** N(x) of **better** solutions.

Choose some $y \in N(x)$ as the new solution.

Continue until neighborhood is empty \rightarrow local optimum.

- Neighborhood: what solutions are neighbors?
- Pivot rule: how to select next solution?
- Initialization: how to compute starting solution?
- Cost: how to compare solutions?

Local search: simple combinatorial optimization paradigm.

For a solution x, define a **neighborhood** N(x) of **better** solutions.

Choose some $y \in N(x)$ as the new solution.

Continue until neighborhood is empty \rightarrow local optimum.

Ingredients:

- Neighborhood: what solutions are neighbors?
- Pivot rule: how to select next solution?
- ▶ Initialization: how to compute starting solution?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Cost: how to compare solutions?

Local search: simple combinatorial optimization paradigm.

For a solution x, define a neighborhood N(x) of better solutions.

Choose some $y \in N(x)$ as the new solution.

Continue until neighborhood is empty \rightarrow local optimum.

- Neighborhood: what solutions are neighbors?
- Pivot rule: how to select next solution?
- Initialization: how to compute starting solution?
- Cost: how to compare solutions?

・ロト・日本・日本・日本・日本・日本

Theorem (Englert, Röglin & Vöcking)

There exist instances of 2-opt where the heuristic may take $2^{\Omega(n)}$ iterations to converge.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem (Englert, Röglin & Vöcking)

There exist instances of 2-opt where the heuristic may take $2^{\Omega(n)}$ iterations to converge.

Theorem (Englert, Röglin & Vöcking) The smoothed complexity of 2-opt on general graphs is $m^{1+o(1)}n\phi$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Englert, Röglin & Vöcking)

There exist instances of 2-opt where the heuristic may take $2^{\Omega(n)}$ iterations to converge.

Theorem (Englert, Röglin & Vöcking)

The smoothed complexity of 2-opt on general graphs is $m^{1+o(1)}n\phi$.

Theorem (Manthey & van Rhijn)

The smoothed complexity of 2-opt on Euclidean graphs is $O(n^{4+\frac{1}{3}}/\sigma^2)$.

Local Search: FLIP for MAX-CUT

Definition (MAX-CUT)

Input: weighted graph G = (V, E, w). Goal: find a set $S \subset V$ such that

$$\sum_{\substack{e=\{u,v\}\in E\\u\in V,v\notin V}}w(e)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

is maximized.

Theorem MAX-CUT is NP-hard.

Local Search: FLIP for MAX-CUT

Definition (MAX-CUT)

Input: weighted graph G = (V, E, w). Goal: find a set $S \subset V$ such that

$$\sum_{\substack{e=\{u,v\}\in E\\u\in V,v\notin V}}w(e)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

is maximized.

Theorem MAX-CUT is NP-hard.

イロト イヨト イヨト イヨト

- 2

▲ロト ▲御 ト ▲臣 ト ▲臣 ト → 臣 → の々ぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @
Local Search: Flip for MAX-CUT

Theorem (Schäffer & Yannakakis)

There exist instances of MAX-CUT on which every run of Flip has exponential length.

Local Search: Flip for MAX-CUT

Theorem (Schäffer & Yannakakis)

There exist instances of MAX-CUT on which every run of Flip has exponential length.

Theorem (Bibak, Carlson & Chandrasekaran)

The smoothed complexity of the Flip heuristic is $O(n^{7.84}\phi)$ for complete graphs.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Local Search: Flip for MAX-CUT

Theorem (Schäffer & Yannakakis)

There exist instances of MAX-CUT on which every run of Flip has exponential length.

Theorem (Bibak, Carlson & Chandrasekaran)

The smoothed complexity of the Flip heuristic is $O(n^{7.84}\phi)$ for complete graphs.

Ongoing work: general (non-complete) graphs, MAX-k-CUT.

Local Search: Lloyd for k-means

Definition (*k*-means clustering)

Input: a set of points $X \subseteq \mathbb{R}^d$, an integer k > 0. Goal: find a partition $\{C_i\}_{i=1}^k$ of X such that

$$\sum_{i=1}^k \sum_{x \in C_i} \|x - c_i\|^2$$

is minimized, where $c_i = \frac{1}{|C_i|} \sum_{x \in C_i} x$ (center of mass).

Theorem

k-means clustering is NP-hard.

Local Search: Lloyd for k-means

Definition (k-means clustering)

Input: a set of points $X \subseteq \mathbb{R}^d$, an integer k > 0. Goal: find a partition $\{C_i\}_{i=1}^k$ of X such that

$$\sum_{i=1}^k \sum_{x \in C_i} \|x - c_i\|^2$$

is minimized, where $c_i = \frac{1}{|C_i|} \sum_{x \in C_i} x$ (center of mass).

Theorem

k-means clustering is NP-hard.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへ⊙

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへ⊙

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ⊙

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ⊙

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへ⊙

Theorem (Vattani)

There exist instances of k-means that require $2^{\Omega(n)}$ iterations, even in the plane.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem (Vattani)

There exist instances of k-means that require $2^{\Omega(n)}$ iterations, even in the plane.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (Arthur, Manthey & Röglin)

The smoothed complexity of k-means is $\tilde{O}(n^{34}k^{34}/\sigma^6)$.

Theorem (Vattani)

There exist instances of k-means that require $2^{\Omega(n)}$ iterations, even in the plane.

Theorem (Arthur, Manthey & Röglin)

The smoothed complexity of k-means is $\tilde{O}(n^{34}k^{34}/\sigma^6)$.

Open: different norms.

Questions

Intermezzo: questions?

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Analyze in the One-Step Model

|V| = n and |E| = m.

Weights: $w(e) \sim f_e$, $w(g) \sim f_g$, etc., with weights in [0, 1].

Potential argument: if all steps improve tour by at least $\Delta_{\min} > 0$, how long before we terminate?

(日) (四) (日) (日) (日)

Analyze in the One-Step Model

|V| = n and |E| = m.

Weights: $w(e) \sim f_e$, $w(g) \sim f_g$, etc., with weights in [0,1].

Potential argument: if all steps improve tour by at least $\Delta_{\min} > 0$, how long before we terminate?

Analyze in the One-Step Model

$$|V| = n$$
 and $|E| = m$.

Weights: $w(e) \sim f_e$, $w(g) \sim f_g$, etc., with weights in [0, 1].

 $\label{eq:potential argument: if all steps improve tour by at least $\Delta_{\min} > 0$, how long before we terminate?}$

Some Necessary Tools

Lemma (Union Bound/Boole's Inequality) Let $\{E_i\}_{i=1}^k$ be a collection of events. Then

$$\mathbb{P}\left(\bigcup_{i=1}^{k} E_{i}\right) \leq \sum_{i=1}^{k} \mathbb{P}(E_{i}).$$

Lemma (Interval Lemma)

Let X be a random variable whose density is bounded from above by ϕ . Let I be an interval of size at most ϵ . Then

 $\mathbb{P}(X \in I) \le \phi \cdot \epsilon.$

<u>Proof:</u> $\mathbb{P}(X \in I) = \int_I f_X(x) dx \le \phi \cdot \int_I dx \le \phi \cdot \epsilon.$

Some Necessary Tools

Lemma (Union Bound/Boole's Inequality) Let $\{E_i\}_{i=1}^k$ be a collection of events. Then

$$\mathbb{P}\left(\bigcup_{i=1}^{k} E_i\right) \leq \sum_{i=1}^{k} \mathbb{P}(E_i).$$

Lemma (Interval Lemma)

Let X be a random variable whose density is bounded from above by ϕ . Let I be an interval of size at most ϵ . Then

 $\mathbb{P}(X \in I) \leq \phi \cdot \epsilon.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

<u>Proof:</u> $\mathbb{P}(X \in I) = \int_I f_X(x) dx \le \phi \cdot \int_I dx \le \phi \cdot \epsilon.$

Strategy of Analysis

Consider a single iteration:

Improvement:

$$\Delta = w_h + w_g - w_e - w_f.$$

<u>Assume</u> w_g , w_e , w_f are fixed, so that $w_g - w_e - w_f = t$. Then

$$\mathbb{P}(\Delta \leq \epsilon) = \mathbb{P}(\Delta \in (0, \epsilon]) = \mathbb{P}(\mathbf{w}_{\mathbf{h}} \in (-t, -t + \epsilon]).$$

Strategy of Analysis

Consider a single iteration:

Improvement:

$$\Delta = w_h + w_g - w_e - w_f.$$

<u>Assume</u> w_g , w_e , w_f are fixed, so that $w_g - w_e - w_f = t$. Then

$$\mathbb{P}(\Delta \leq \epsilon) = \mathbb{P}(\Delta \in (0, \epsilon]) = \mathbb{P}(\mathbf{w}_{\mathbf{h}} \in (-t, -t + \epsilon]).$$

Strategy of Analysis

Consider a single iteration:

Improvement:

$$\Delta = w_h + w_g - w_e - w_f.$$

<u>Assume</u> w_g , w_e , w_f are fixed, so that $w_g - w_e - w_f = t$. Then

$$\mathbb{P}(\Delta \leq \epsilon) = \mathbb{P}(\Delta \in (0,\epsilon]) = \mathbb{P}(w_h \in (-t,-t+\epsilon]).$$
Bounding the Improvement

Density of
$$w_h$$
:
 $f_h(x) \le \phi$ for $x \in [0, 1]$.

We have (Interval Lemma)

$$\mathbb{P}(\Delta \leq \epsilon) = \mathbb{P}(w_h \in (-t, -t + \epsilon]) \leq \phi \cdot \epsilon.$$

There are m edges, so m^2 choices for g and h. Union bound:

Lemma

If Δ_{\min} is the improvement of the worst 2-opt step, then $\mathbb{P}(\Delta_{\min} \leq \epsilon) = O(m^2 \cdot \phi \cdot \epsilon).$

Bounding the Improvement

Density of
$$w_h$$
:
 $f_h(x) \leq \phi$ for $x \in [0, 1]$.

We have (Interval Lemma)

$$\mathbb{P}(\Delta \leq \epsilon) = \mathbb{P}(w_h \in (-t, -t + \epsilon]) \leq \phi \cdot \epsilon.$$

There are m edges, so m^2 choices for g and h. Union bound:

Lemma

If Δ_{\min} is the improvement of the worst 2-opt step, then $\mathbb{P}(\Delta_{\min} \leq \epsilon) = O(m^2 \cdot \phi \cdot \epsilon).$

Bounding the Improvement

Density of w_h : $f_h(x) \le \phi$ for $x \in [0, 1]$.

We have (Interval Lemma)

$$\mathbb{P}(\Delta \leq \epsilon) = \mathbb{P}(w_h \in (-t, -t + \epsilon]) \leq \phi \cdot \epsilon.$$

There are m edges, so m^2 choices for g and h. Union bound:

Lemma

If Δ_{\min} is the improvement of the worst 2-opt step, then $\mathbb{P}(\Delta_{\min} \leq \epsilon) = O(m^2 \cdot \phi \cdot \epsilon).$

T: number of iterations to terminate. Then smoothed complexity $= \mathbb{E}(T)$. Tail sum:

$$\mathbb{E}(T) \leq \sum_{t=1}^{n!} \mathbb{P}(T \geq t).$$

Every tour has length \leq *n*, so can take at most n/Δ_{\min} steps:

$$\mathbb{P}(T \ge t) \le \mathbb{P}(t \le n/\Delta_{\min}) = \mathbb{P}(\Delta_{\min} \le n/t) = O(\phi \cdot m \cdot n/t).$$

Thus,

$$\mathbb{E}(\mathbf{T}) \leq \sum_{t=1}^{n!} O(\phi \cdot m \cdot n/t) = O\left(\phi \cdot m \cdot n \cdot \int_{1}^{n!} \frac{1}{t} dt\right)$$
$$= O(\phi \cdot m \cdot n^{2} \cdot \log n).$$

 $\textbf{\textit{T}}:$ number of iterations to terminate. Then smoothed complexity $= \mathbb{E}(\textbf{\textit{T}}).$ Tail sum:

$$\mathbb{E}(T) \leq \sum_{t=1}^{n!} \mathbb{P}(T \geq t).$$

Every tour has length \leq *n*, so can take at most n/Δ_{\min} steps:

$$\mathbb{P}(\mathbf{T} \geq t) \leq \mathbb{P}(t \leq n/\Delta_{\min}) = \mathbb{P}(\Delta_{\min} \leq n/t) = O(\phi \cdot m \cdot n/t).$$

Thus,

$$\mathbb{E}(\mathbf{T}) \leq \sum_{t=1}^{n!} O(\phi \cdot m \cdot n/t) = O\left(\phi \cdot m \cdot n \cdot \int_{1}^{n!} \frac{1}{t} dt\right)$$
$$= O(\phi \cdot m \cdot n^{2} \cdot \log n).$$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

T: number of iterations to terminate. Then smoothed complexity $= \mathbb{E}(T)$. Tail sum:

$$\mathbb{E}(\mathbf{T}) \leq \sum_{t=1}^{n!} \mathbb{P}(\mathbf{T} \geq t).$$

Every tour has length \leq *n*, so can take at most n/Δ_{\min} steps:

$$\mathbb{P}(T \ge t) \le \mathbb{P}(t \le n/\Delta_{\min}) = \mathbb{P}(\Delta_{\min} \le n/t) = O(\phi \cdot m \cdot n/t).$$

Thus,

$$\mathbb{E}(\mathbf{T}) \leq \sum_{t=1}^{n!} O(\phi \cdot m \cdot n/t) = O\left(\phi \cdot m \cdot n \cdot \int_{1}^{n!} \frac{1}{t} dt\right)$$
$$= O(\phi \cdot m \cdot n^{2} \cdot \log n).$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

T: number of iterations to terminate. Then smoothed complexity = $\mathbb{E}(T)$. Tail sum:

$$\mathbb{E}(T) \leq \sum_{t=1}^{n!} \mathbb{P}(T \geq t).$$

Every tour has length \leq *n*, so can take at most n/Δ_{\min} steps:

$$\mathbb{P}(T \ge t) \le \mathbb{P}(t \le n/\Delta_{\min}) = \mathbb{P}(\Delta_{\min} \le n/t) = O(\phi \cdot m \cdot n/t).$$

Thus,

$$\mathbb{E}(T) \leq \sum_{t=1}^{n!} O(\phi \cdot m \cdot n/t) = O\left(\phi \cdot m \cdot n \cdot \int_{1}^{n!} \frac{1}{t} dt\right)$$
$$= O(\phi \cdot m \cdot n^{2} \cdot \log n).$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

Result

Theorem

The smoothed complexity of 2-opt on general graphs is $O(\phi \cdot m \cdot n^2 \log n)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Result

Theorem

The smoothed complexity of 2-opt on general graphs is $O(\phi \cdot m \cdot n^2 \log n)$.

Considering sequences of iterations:

Theorem (Englert, Röglin & Vöcking)

The smoothed complexity of 2-opt on general graphs is $m^{1+o(1)}n\phi$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Bounds are often loose: how close to reality can you get?

Union bound step is often costly: techniques to reduce it?

- Smoothed approximation performance.
- More complicated heuristics: Lin-Kernighan for TSP?

- Bounds are often loose: how close to reality can you get?
- Union bound step is often costly: techniques to reduce it?

- Smoothed approximation performance.
- More complicated heuristics: Lin-Kernighan for TSP?

- Bounds are often loose: how close to reality can you get?
- Union bound step is often costly: techniques to reduce it?

- Smoothed approximation performance.
- ▶ More complicated heuristics: Lin-Kernighan for TSP?

- Bounds are often loose: how close to reality can you get?
- Union bound step is often costly: techniques to reduce it?

- Smoothed approximation performance.
- More complicated heuristics: Lin-Kernighan for TSP?

Concluding Remarks

- Powerful method, but can be technically involved.
- May give insight into heuristic performance and design.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Very active and relatively young field.

Concluding Remarks

- Powerful method, but can be technically involved.
- May give insight into heuristic performance and design.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Very active and relatively young field.

Concluding Remarks

- Powerful method, but can be technically involved.
- May give insight into heuristic performance and design.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Very active and relatively young field.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Consider a vertex v that flips. Gain:

$$\Delta = \sum_{e = \{u, v\} \in E} \lambda_e w_e, \quad \lambda \in \{1, -1\}$$

Assume all w_e but one $w_{e'}$ are fixed:

$$\Delta = \lambda_{e'} w_{e'} + \sum_{e \neq e'} \lambda_e w_e = w_{e'} + t.$$

Like in 2-opt:

 $\mathbb{P}(\Delta \leq \epsilon) = \mathbb{P}(\Delta \in (0, \epsilon]) = \mathbb{P}(w_{e'} \in (-t, -t + \epsilon]) \leq \phi \cdot \epsilon.$

Union bound incurs factor $O(n^n) \rightarrow$ useless.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Consider a vertex v that flips. Gain:

$$\Delta = \sum_{e = \{u, v\} \in E} \lambda_e w_e, \quad \lambda \in \{1, -1\}$$

Assume all w_e but one $w_{e'}$ are fixed:

$$\Delta = \lambda_{e'} w_{e'} + \sum_{e \neq e'} \lambda_e w_e = w_{e'} + t.$$

Like in 2-opt:

 $\mathbb{P}(\Delta \leq \epsilon) = \mathbb{P}(\Delta \in (0, \epsilon]) = \mathbb{P}(w_{e'} \in (-t, -t + \epsilon]) \leq \phi \cdot \epsilon.$

Union bound incurs factor $O(n^n) \rightarrow$ useless.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Consider a vertex v that flips. Gain:

$$\Delta = \sum_{e = \{u, v\} \in E} \lambda_e w_e, \quad \lambda \in \{1, -1\}$$

Assume all w_e but one $w_{e'}$ are fixed:

$$\Delta = \lambda_{e'} w_{e'} + \sum_{e \neq e'} \lambda_e w_e = w_{e'} + t.$$

Like in 2-opt:

 $\mathbb{P}(\Delta \leq \epsilon) = \mathbb{P}(\Delta \in (0, \epsilon]) = \mathbb{P}(w_{e'} \in (-t, -t + \epsilon]) \leq \phi \cdot \epsilon.$

Union bound incurs factor $O(n^n) \rightarrow$ useless.

・ロ・・ 「「・・」、 ・ 「」、 ・ 「」、 ・ ・ 」

Consider a vertex v that flips. Gain:

$$\Delta = \sum_{e = \{u, v\} \in E} \lambda_e w_e, \quad \lambda \in \{1, -1\}$$

Assume all w_e but one $w_{e'}$ are fixed:

$$\Delta = \lambda_{e'} w_{e'} + \sum_{e \neq e'} \lambda_e w_e = w_{e'} + t.$$

Like in 2-opt:

 $\mathbb{P}(\Delta \leq \epsilon) = \mathbb{P}(\Delta \in (0, \epsilon]) = \mathbb{P}(w_{e'} \in (-t, -t + \epsilon]) \leq \phi \cdot \epsilon.$

Union bound incurs factor $O(n^n) \rightarrow$ useless.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Consider a sequence of ℓ flips:

$$S=(v_1v_2\ldots v_\ell).$$

Suppose some v flips twice in S.

Gain of two flips of v:

Edge weight $\{u, v\}$ appears in $\Delta \iff u$ flips *odd* # of times between flips of v.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Consider a sequence of ℓ flips:

$$S=(v_1v_2\ldots v_\ell).$$

Suppose some v flips twice in S.

Gain of two flips of v:

Edge weight $\{u, v\}$ appears in $\Delta \iff u$ flips *odd* # of times between flips of v.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Consider a sequence of ℓ flips:

$$S=(v_1v_2\ldots v_\ell).$$

Suppose some v flips twice in S.

Gain of two flips of v:

Edge weight $\{u, v\}$ appears in $\Delta \iff u$ flips *odd* # of times between flips of v.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We now have

 $\Delta_v = \sum$ $\lambda_e W_e$. $e = \{u, v\}$ *u* flips of f # of times

In particular: only *active* vertices appear in Δ_{v} .

Definition

A k-repeating subsequence of length ℓ is a sequence of flips in which at least $\lceil \ell/k \rceil$ vertices flip at least twice.

Lemma (Etscheid & Röglin, 2017)

Any sequence of at least 5n flips contains a $\lceil 5 \log_2 n \rceil$ -repeating subsequence.

We now have

$$\Delta_v = \sum_{\substack{e = \{u, v\}\\ u \text{ flips off } \# \text{ of times}}} \lambda_e w_e.$$

In particular: only active vertices appear in Δ_{ν} .

Definition

A k-repeating subsequence of length ℓ is a sequence of flips in which at least $\lceil \ell/k \rceil$ vertices flip at least twice.

Lemma (Etscheid & Röglin, 2017)

Any sequence of at least 5n flips contains a $\lceil 5 \log_2 n \rceil$ -repeating subsequence.

We now have

In particular: only *active* vertices appear in Δ_{v} .

Definition

A k-repeating subsequence of length ℓ is a sequence of flips in which at least $\lceil \ell/k \rceil$ vertices flip at least twice.

Lemma (Etscheid & Röglin, 2017)

Any sequence of at least 5n flips contains a $\lceil 5 \log_2 n \rceil$ -repeating subsequence.

We now have

$$\Delta_v = \sum_{\substack{e = \{u, v\}\\ u \text{ flips off } \# \text{ of times}}} \lambda_e w_e.$$

In particular: only *active* vertices appear in Δ_{v} .

Definition

A k-repeating subsequence of length ℓ is a sequence of flips in which at least $\lceil \ell/k \rceil$ vertices flip at least twice.

Lemma (Etscheid & Röglin, 2017)

Any sequence of at least 5n flips contains a $\lceil 5 \log_2 n \rceil$ -repeating subsequence.
Need two more ingredients:

Lemma (Etscheid & Röglin, 2017)

A k-repeating sequence of length ℓ contains at least $\lceil \ell/(2k) \rceil$ linearly independent pairs of flips.

Lemma (Etscheid & Röglin, 2017)

Let $X_1 \ldots X_m$ be independent random variables with densities bounded by ϕ . Let $\lambda_1, \ldots, \lambda_k$ be linearly independent integral vectors. Then

$$\mathbb{P}\left(\text{all }\lambda_{i}^{\mathsf{T}}X \text{ fall into } [0,\epsilon]\right) \leq (\epsilon\phi)^{k}.$$

Need two more ingredients:

Lemma (Etscheid & Röglin, 2017)

A k-repeating sequence of length ℓ contains at least $\lceil \ell/(2k) \rceil$ linearly independent pairs of flips.

Lemma (Etscheid & Röglin, 2017)

Let $X_1 \ldots X_m$ be independent random variables with densities bounded by ϕ . Let $\lambda_1, \ldots, \lambda_k$ be linearly independent integral vectors. Then

$$\mathbb{P}\left(\text{all }\lambda_{i}^{\mathsf{T}}X \text{ fall into } [0,\epsilon]\right) \leq (\epsilon\phi)^{k}.$$

Need two more ingredients:

Lemma (Etscheid & Röglin, 2017)

A k-repeating sequence of length ℓ contains at least $\lceil \ell/(2k) \rceil$ linearly independent pairs of flips.

Lemma (Etscheid & Röglin, 2017)

Let $X_1 \ldots X_m$ be independent random variables with densities bounded by ϕ . Let $\lambda_1, \ldots, \lambda_k$ be linearly independent integral vectors. Then

$$\mathbb{P}\left(\text{all }\lambda_{i}^{\mathsf{T}}X \text{ fall into } [0,\epsilon]\right) \leq (\epsilon\phi)^{k}.$$

Need two more ingredients:

Lemma (Etscheid & Röglin, 2017)

A k-repeating sequence of length ℓ contains at least $\lceil \ell/(2k) \rceil$ linearly independent pairs of flips.

Lemma (Etscheid & Röglin, 2017)

Let $X_1 \ldots X_m$ be independent random variables with densities bounded by ϕ . Let $\lambda_1, \ldots, \lambda_k$ be linearly independent integral vectors. Then

$$\mathbb{P}\left(\text{all }\lambda_{i}^{\mathsf{T}}X \text{ fall into } [0,\epsilon]\right) \leq (\epsilon\phi)^{k}.$$

Lemma

Let Δ_{min} be the minimum improvement of any k-repeating sequence of length ℓ . Then

$$\mathbb{P}(\Delta \leq \epsilon) \leq 2^{\ell} \cdot n^{\ell} \cdot (\epsilon \phi)^{\lceil \ell/(2k) \rceil} = (2^{2k} n^{2k} \epsilon \phi)^{\lceil \ell/(2k) \rceil}$$

Proof.

Fix a k-repeating sequence S. Since there are at least $\lceil \ell/(2k) \rceil$ linearly independent pairs of flips in S, probability that all pairs yield an improvement $\leq \epsilon$ is at most $(\epsilon \phi)^{\lceil \ell/(2k) \rceil}$. Union bound over n^{ℓ} different sequences of length ℓ and all 2^{ℓ} starting configurations finishes the proof.

Lemma

Let Δ_{\min} be the minimum improvement of any k-repeating sequence of length ℓ . Then

$$\mathbb{P}(\Delta \le \epsilon) \le 2^{\ell} \cdot n^{\ell} \cdot (\epsilon \phi)^{\lceil \ell/(2k) \rceil} = (2^{2k} n^{2k} \epsilon \phi)^{\lceil \ell/(2k) \rceil}$$

Proof.

Fix a k-repeating sequence S. Since there are at least $\lceil \ell/(2k) \rceil$ linearly independent pairs of flips in S, probability that all pairs yield an improvement $\leq \epsilon$ is at most $(\epsilon \phi)^{\lceil \ell/(2k) \rceil}$. Union bound over n^{ℓ} different sequences of length ℓ and all 2^{ℓ} starting configurations finishes the proof.

Finalizing the Proof

Theorem

The smoothed complexity of Max-Cut/Flip is $n^{O(\log n)}$.

Proof.

Fix any sequence of steps. Since any sequence of 5n steps contains a $\lceil 5 \log_2 n \rceil$ -repeating subsequence, we split the sequence into blocks of 5n, and identify such a subsequence in each. The probability that any of these sequences improves the cut by at most ϵ is then at most $(2^{\lceil 5 \log_2 n \rceil} n^{5 \lceil \log_2 n \rceil} \epsilon \phi)^{n/\log_2 n}$. Write T for the number of iterations until Flip terminates. Then (cf. 2-opt)

$$\mathbb{P}(T \ge t) \le (2^{\lceil 5 \log_2 n \rceil} n^{5 \lceil \log_2 n \rceil} n^2 \phi/t)^{n/\log_2 n}$$

The rest of the proof is analogous to 2-opt.

Finalizing the Proof

Theorem

The smoothed complexity of Max-Cut/Flip is $n^{O(\log n)}$.

Proof.

Fix any sequence of steps. Since any sequence of 5n steps contains a $\lceil 5 \log_2 n \rceil$ -repeating subsequence, we split the sequence into blocks of 5n, and identify such a subsequence in each. The probability that any of these sequences improves the cut by at most ϵ is then at most $(2^{\lceil 5 \log_2 n \rceil} n^{5 \lceil \log_2 n \rceil} \epsilon \phi)^{n/\log_2 n}$. Write T for the number of iterations until Flip terminates. Then (cf. 2-opt)

$$\mathbb{P}(T \geq t) \leq (2^{\lceil 5 \log_2 n \rceil} n^{5 \lceil \log_2 n \rceil} n^2 \phi/t)^{n/\log_2 n}$$

A D N A 目 N A E N A E N A B N A C N

The rest of the proof is analogous to 2-opt.