
Smoothed Analysis of Local Search

Jesse van Rhijn

University of Twente

February 8, 2023

2-Opt and TSP

#iterations approximation ratio

theoretical 2Ω(n) O(log n), Ω(log n
log log n)

(Englert, Röglin, Vöcking) (Chandra, Karloff, Tovey)

practical o(n2) 1.05
(Johnson, McGeoch)

2-Opt and TSP

#iterations approximation ratio

theoretical 2Ω(n) O(log n), Ω(log n
log log n)

(Englert, Röglin, Vöcking) (Chandra, Karloff, Tovey)

practical o(n2) 1.05
(Johnson, McGeoch)

2-Opt and TSP

#iterations approximation ratio

theoretical 2Ω(n) O(log n), Ω(log n
log log n)

(Englert, Röglin, Vöcking) (Chandra, Karloff, Tovey)

practical o(n2) 1.05
(Johnson, McGeoch)

2-Opt and TSP

#iterations approximation ratio

theoretical 2Ω(n) O(log n), Ω(log n
log log n)

(Englert, Röglin, Vöcking) (Chandra, Karloff, Tovey)

practical o(n2) 1.05
(Johnson, McGeoch)

2-Opt and TSP

#iterations approximation ratio

theoretical 2Ω(n) O(log n), Ω(log n
log log n)

(Englert, Röglin, Vöcking) (Chandra, Karloff, Tovey)

practical o(n2) 1.05
(Johnson, McGeoch)

2-Opt and TSP

#iterations approximation ratio

theoretical 2Ω(n) O(log n), Ω(log n
log log n)

(Englert, Röglin, Vöcking) (Chandra, Karloff, Tovey)

practical o(n2) 1.05
(Johnson, McGeoch)

2-Opt and TSP

#iterations approximation ratio

theoretical 2Ω(n) O(log n), Ω(log n
log log n)

(Englert, Röglin, Vöcking) (Chandra, Karloff, Tovey)

practical o(n2) 1.05
(Johnson, McGeoch)

2-Opt and TSP

#iterations approximation ratio

theoretical 2Ω(n) O(log n), Ω(log n
log log n)

(Englert, Röglin, Vöcking) (Chandra, Karloff, Tovey)

practical o(n2) 1.05
(Johnson, McGeoch)

2-Opt and TSP

#iterations approximation ratio

theoretical 2Ω(n) O(log n), Ω(log n
log log n)

(Englert, Röglin, Vöcking) (Chandra, Karloff, Tovey)

practical o(n2) 1.05
(Johnson, McGeoch)

2-Opt and TSP

#iterations approximation ratio

theoretical 2Ω(n) O(log n), Ω(log n
log log n)

(Englert, Röglin, Vöcking) (Chandra, Karloff, Tovey)

practical o(n2) 1.05
(Johnson, McGeoch)

Worst Case Analysis

Standard measure of algorithm performance.

T

Formally: W (n) = maxI∈In T (I).

Advantage: strong guarantee on performance.
Disadvantage: may be overly pessimistic.

Worst Case Analysis

Standard measure of algorithm performance.

T

Formally: W (n) = maxI∈In T (I).

Advantage: strong guarantee on performance.
Disadvantage: may be overly pessimistic.

Worst Case Analysis

Standard measure of algorithm performance.

T

Formally: W (n) = maxI∈In T (I).

Advantage: strong guarantee on performance.

Disadvantage: may be overly pessimistic.

Worst Case Analysis

Standard measure of algorithm performance.

T

Formally: W (n) = maxI∈In T (I).

Advantage: strong guarantee on performance.
Disadvantage: may be overly pessimistic.

Average Case Analysis

Possible solution to pessimism.

T

Formally: A(n) = EI∼πn(T (I)).

Advantage: reduced impact of pathologies.
Disadvantage: may be unrealistic, choice of πn.

Average Case Analysis

Possible solution to pessimism.

T

Formally: A(n) = EI∼πn(T (I)).

Advantage: reduced impact of pathologies.
Disadvantage: may be unrealistic, choice of πn.

Average Case Analysis

Possible solution to pessimism.

T

Formally: A(n) = EI∼πn(T (I)).

Advantage: reduced impact of pathologies.

Disadvantage: may be unrealistic, choice of πn.

Average Case Analysis

Possible solution to pessimism.

T

Formally: A(n) = EI∼πn(T (I)).

Advantage: reduced impact of pathologies.
Disadvantage: may be unrealistic, choice of πn.

Average Case Shortcomings

Smoothed Analysis

Smoothed analysis: random perturbations of worst case instances.

T

Formally: S(n, σ) = maxI∈In Eg∼πσ(T (I , g)).

Combines average case and worst case analysis.

Smoothed Analysis

Smoothed analysis: random perturbations of worst case instances.

T

Formally: S(n, σ) = maxI∈In Eg∼πσ(T (I , g)).

Combines average case and worst case analysis.

Smoothed Analysis

Smoothed analysis: random perturbations of worst case instances.

T

Formally: S(n, σ) = maxI∈In Eg∼πσ(T (I , g)).

Combines average case and worst case analysis.

Smoothed Analysis: Original and Perturbed

Moving Between W and A

Smoothed complexity is parametrized by σ.

Allows interpolation between worst/average case.

T
W (n)

S(n, σ)
A(n)

σ−1

Moving Between W and A

Smoothed complexity is parametrized by σ.

Allows interpolation between worst/average case.

T
W (n)

S(n, σ)
A(n)

σ−1

Two-Step and One-Step Models

Most common models of SA:

▶ Two step model: take an arbitrary input and perturb it (by
Gaussians).

▶ One step model: draw numbers in the input from independent
bounded probability densities.

Two step model is parametrized by σ, one step model by ϕ ≥ 1.

Rough correspondence: ϕ ≃ σ−1.

Two-Step and One-Step Models

Most common models of SA:

▶ Two step model: take an arbitrary input and perturb it (by
Gaussians).

▶ One step model: draw numbers in the input from independent
bounded probability densities.

Two step model is parametrized by σ, one step model by ϕ ≥ 1.

Rough correspondence: ϕ ≃ σ−1.

Two-Step and One-Step Models

Most common models of SA:

▶ Two step model: take an arbitrary input and perturb it (by
Gaussians).

▶ One step model: draw numbers in the input from independent
bounded probability densities.

Two step model is parametrized by σ, one step model by ϕ ≥ 1.

Rough correspondence: ϕ ≃ σ−1.

Two-Step and One-Step Models

Most common models of SA:

▶ Two step model: take an arbitrary input and perturb it (by
Gaussians).

▶ One step model: draw numbers in the input from independent
bounded probability densities.

Two step model is parametrized by σ, one step model by ϕ ≥ 1.

Rough correspondence: ϕ ≃ σ−1.

Two-Step and One-Step Models

Most common models of SA:

▶ Two step model: take an arbitrary input and perturb it (by
Gaussians).

▶ One step model: draw numbers in the input from independent
bounded probability densities.

Two step model is parametrized by σ, one step model by ϕ ≥ 1.

Rough correspondence: ϕ ≃ σ−1.

Comparing the Models: Weighted Graphs

e

g

Weights: w(e) ∼ fe , w(g) ∼ fg , etc.

▶ fe , fg ≤ ϕ.

▶ w(e), w(g) are independent!

Metric instances?

Comparing the Models: Weighted Graphs

e

g

Weights: w(e) ∼ fe , w(g) ∼ fg , etc.

▶ fe , fg ≤ ϕ.

▶ w(e), w(g) are independent!

Metric instances?

Comparing the Models: Weighted Graphs

e

g

Weights: w(e) ∼ fe , w(g) ∼ fg , etc.

▶ fe , fg ≤ ϕ.

▶ w(e), w(g) are independent!

Metric instances?

Comparing the Models: Weighted Graphs

e

g

Weights: w(e) ∼ fe , w(g) ∼ fg , etc.

▶ fe , fg ≤ ϕ.

▶ w(e), w(g) are independent!

Metric instances?

Comparing the Models: Weighted Graphs

e

g

e

g

x1

x2

x3

Perturbations: usually Gaussian.

Weights: w(e) = d(x2, x3), w(g) = d(x1, x2).

Comparing the Models: Weighted Graphs

e

g

e

g

x1

x2

x3

Perturbations: usually Gaussian.

Weights: w(e) = d(x2, x3), w(g) = d(x1, x2).

Comparing the Models: Weighted Graphs

e

g

e

g

x1

x2

x3

Perturbations: usually Gaussian.

Weights: w(e) = d(x2, x3), w(g) = d(x1, x2).

Questions

Intermezzo: questions?

Local Search

Local search: simple combinatorial optimization paradigm.

For a solution x , define a neighborhood N(x) of better solutions.

Choose some y ∈ N(x) as the new solution.

Continue until neighborhood is empty → local optimum.

Ingredients:

▶ Neighborhood: what solutions are neighbors?

▶ Pivot rule: how to select next solution?

▶ Initialization: how to compute starting solution?

▶ Cost: how to compare solutions?

Local Search

Local search: simple combinatorial optimization paradigm.

For a solution x , define a neighborhood N(x) of better solutions.

Choose some y ∈ N(x) as the new solution.

Continue until neighborhood is empty → local optimum.

Ingredients:

▶ Neighborhood: what solutions are neighbors?

▶ Pivot rule: how to select next solution?

▶ Initialization: how to compute starting solution?

▶ Cost: how to compare solutions?

Local Search

Local search: simple combinatorial optimization paradigm.

For a solution x , define a neighborhood N(x) of better solutions.

Choose some y ∈ N(x) as the new solution.

Continue until neighborhood is empty → local optimum.

Ingredients:

▶ Neighborhood: what solutions are neighbors?

▶ Pivot rule: how to select next solution?

▶ Initialization: how to compute starting solution?

▶ Cost: how to compare solutions?

Local Search

Local search: simple combinatorial optimization paradigm.

For a solution x , define a neighborhood N(x) of better solutions.

Choose some y ∈ N(x) as the new solution.

Continue until neighborhood is empty → local optimum.

Ingredients:

▶ Neighborhood: what solutions are neighbors?

▶ Pivot rule: how to select next solution?

▶ Initialization: how to compute starting solution?

▶ Cost: how to compare solutions?

Local Search

Local search: simple combinatorial optimization paradigm.

For a solution x , define a neighborhood N(x) of better solutions.

Choose some y ∈ N(x) as the new solution.

Continue until neighborhood is empty → local optimum.

Ingredients:

▶ Neighborhood: what solutions are neighbors?

▶ Pivot rule: how to select next solution?

▶ Initialization: how to compute starting solution?

▶ Cost: how to compare solutions?

Local Search

Local search: simple combinatorial optimization paradigm.

For a solution x , define a neighborhood N(x) of better solutions.

Choose some y ∈ N(x) as the new solution.

Continue until neighborhood is empty → local optimum.

Ingredients:

▶ Neighborhood: what solutions are neighbors?

▶ Pivot rule: how to select next solution?

▶ Initialization: how to compute starting solution?

▶ Cost: how to compare solutions?

Local Search

Local search: simple combinatorial optimization paradigm.

For a solution x , define a neighborhood N(x) of better solutions.

Choose some y ∈ N(x) as the new solution.

Continue until neighborhood is empty → local optimum.

Ingredients:

▶ Neighborhood: what solutions are neighbors?

▶ Pivot rule: how to select next solution?

▶ Initialization: how to compute starting solution?

▶ Cost: how to compare solutions?

Local Search

Local search: simple combinatorial optimization paradigm.

For a solution x , define a neighborhood N(x) of better solutions.

Choose some y ∈ N(x) as the new solution.

Continue until neighborhood is empty → local optimum.

Ingredients:

▶ Neighborhood: what solutions are neighbors?

▶ Pivot rule: how to select next solution?

▶ Initialization: how to compute starting solution?

▶ Cost: how to compare solutions?

Local Search

Local search: simple combinatorial optimization paradigm.

For a solution x , define a neighborhood N(x) of better solutions.

Choose some y ∈ N(x) as the new solution.

Continue until neighborhood is empty → local optimum.

Ingredients:

▶ Neighborhood: what solutions are neighbors?

▶ Pivot rule: how to select next solution?

▶ Initialization: how to compute starting solution?

▶ Cost: how to compare solutions?

Local Search: 2-Opt

Local Search: 2-Opt

Local Search: 2-Opt

Local Search: 2-Opt

Local Search: 2-Opt

Local Search: 2-Opt

Local Search: 2-Opt

Local Search: 2-Opt

Local Search: 2-Opt

Local Search: 2-Opt

Local Search: 2-Opt

Theorem (Englert, Röglin & Vöcking)

There exist instances of 2-opt where the heuristic may take 2Ω(n)

iterations to converge.

Theorem (Englert, Röglin & Vöcking)

The smoothed complexity of 2-opt on general graphs is m1+o(1)nϕ.

Theorem (Manthey & van Rhijn)

The smoothed complexity of 2-opt on Euclidean graphs is

O(n4+
1
3 /σ2).

Local Search: 2-Opt

Theorem (Englert, Röglin & Vöcking)

There exist instances of 2-opt where the heuristic may take 2Ω(n)

iterations to converge.

Theorem (Englert, Röglin & Vöcking)

The smoothed complexity of 2-opt on general graphs is m1+o(1)nϕ.

Theorem (Manthey & van Rhijn)

The smoothed complexity of 2-opt on Euclidean graphs is

O(n4+
1
3 /σ2).

Local Search: 2-Opt

Theorem (Englert, Röglin & Vöcking)

There exist instances of 2-opt where the heuristic may take 2Ω(n)

iterations to converge.

Theorem (Englert, Röglin & Vöcking)

The smoothed complexity of 2-opt on general graphs is m1+o(1)nϕ.

Theorem (Manthey & van Rhijn)

The smoothed complexity of 2-opt on Euclidean graphs is

O(n4+
1
3 /σ2).

Local Search: FLIP for MAX-CUT

Definition (MAX-CUT)

Input: weighted graph G = (V ,E ,w).
Goal: find a set S ⊂ V such that∑

e={u,v}∈E
u∈V ,v /∈V

w(e)

is maximized.

Theorem
MAX-CUT is NP-hard.

Local Search: FLIP for MAX-CUT

Definition (MAX-CUT)

Input: weighted graph G = (V ,E ,w).
Goal: find a set S ⊂ V such that∑

e={u,v}∈E
u∈V ,v /∈V

w(e)

is maximized.

Theorem
MAX-CUT is NP-hard.

Local Search: Flip for MAX-CUT

Local Search: Flip for MAX-CUT

Local Search: Flip for MAX-CUT

Local Search: Flip for MAX-CUT

Local Search: Flip for MAX-CUT

Local Search: Flip for MAX-CUT

Local Search: Flip for MAX-CUT

Local Search: Flip for MAX-CUT

Local Search: Flip for MAX-CUT

Local Search: Flip for MAX-CUT

Theorem (Schäffer & Yannakakis)

There exist instances of MAX-CUT on which every run of Flip has
exponential length.

Theorem (Bibak, Carlson & Chandrasekaran)

The smoothed complexity of the Flip heuristic is O(n7.84ϕ) for
complete graphs.

Ongoing work: general (non-complete) graphs, MAX-k-CUT.

Local Search: Flip for MAX-CUT

Theorem (Schäffer & Yannakakis)

There exist instances of MAX-CUT on which every run of Flip has
exponential length.

Theorem (Bibak, Carlson & Chandrasekaran)

The smoothed complexity of the Flip heuristic is O(n7.84ϕ) for
complete graphs.

Ongoing work: general (non-complete) graphs, MAX-k-CUT.

Local Search: Flip for MAX-CUT

Theorem (Schäffer & Yannakakis)

There exist instances of MAX-CUT on which every run of Flip has
exponential length.

Theorem (Bibak, Carlson & Chandrasekaran)

The smoothed complexity of the Flip heuristic is O(n7.84ϕ) for
complete graphs.

Ongoing work: general (non-complete) graphs, MAX-k-CUT.

Local Search: Lloyd for k-means

Definition (k-means clustering)

Input: a set of points X ⊆ Rd , an integer k > 0.
Goal: find a partition {Ci}ki=1 of X such that

k∑
i=1

∑
x∈Ci

∥x − ci∥2

is minimized, where ci =
1

|Ci |
∑

x∈Ci
x (center of mass).

Theorem
k-means clustering is NP-hard.

Local Search: Lloyd for k-means

Definition (k-means clustering)

Input: a set of points X ⊆ Rd , an integer k > 0.
Goal: find a partition {Ci}ki=1 of X such that

k∑
i=1

∑
x∈Ci

∥x − ci∥2

is minimized, where ci =
1

|Ci |
∑

x∈Ci
x (center of mass).

Theorem
k-means clustering is NP-hard.

Local Search: k-means Clustering

Local Search: k-means Clustering

Local Search: k-means Clustering

Local Search: k-means Clustering

Local Search: k-means Clustering

Local Search: k-means Clustering

Local Search: k-means Clustering

Local Search: k-means Clustering

Local Search: k-means Clustering

Local Search: k-means Clustering

Theorem (Vattani)

There exist instances of k-means that require 2Ω(n) iterations, even
in the plane.

Theorem (Arthur, Manthey & Röglin)

The smoothed complexity of k-means is Õ(n34k34/σ6).

Open: different norms.

Local Search: k-means Clustering

Theorem (Vattani)

There exist instances of k-means that require 2Ω(n) iterations, even
in the plane.

Theorem (Arthur, Manthey & Röglin)

The smoothed complexity of k-means is Õ(n34k34/σ6).

Open: different norms.

Local Search: k-means Clustering

Theorem (Vattani)

There exist instances of k-means that require 2Ω(n) iterations, even
in the plane.

Theorem (Arthur, Manthey & Röglin)

The smoothed complexity of k-means is Õ(n34k34/σ6).

Open: different norms.

Questions

Intermezzo: questions?

Reminder: 2-Opt

Reminder: 2-Opt

Reminder: 2-Opt

Reminder: 2-Opt

Reminder: 2-Opt

Reminder: 2-Opt

Reminder: 2-Opt

Reminder: 2-Opt

Reminder: 2-Opt

Reminder: 2-Opt

Analyze in the One-Step Model

e

g

|V | = n and |E | = m.

Weights: w(e) ∼ fe , w(g) ∼ fg , etc., with weights in [0, 1].

Potential argument: if all steps improve tour by at least ∆min > 0,
how long before we terminate?

Analyze in the One-Step Model

e

g

|V | = n and |E | = m.

Weights: w(e) ∼ fe , w(g) ∼ fg , etc., with weights in [0, 1].

Potential argument: if all steps improve tour by at least ∆min > 0,
how long before we terminate?

Analyze in the One-Step Model

e

g

|V | = n and |E | = m.

Weights: w(e) ∼ fe , w(g) ∼ fg , etc., with weights in [0, 1].

Potential argument: if all steps improve tour by at least ∆min > 0,
how long before we terminate?

Some Necessary Tools

Lemma (Union Bound/Boole’s Inequality)

Let {Ei}ki=1 be a collection of events. Then

P

(
k⋃

i=1

Ei

)
≤

k∑
i=1

P(Ei).

Lemma (Interval Lemma)

Let X be a random variable whose density is bounded from above
by ϕ. Let I be an interval of size at most ϵ. Then

P(X ∈ I) ≤ ϕ · ϵ.

Proof: P(X ∈ I) =
∫
I fX (x)dx ≤ ϕ ·

∫
I dx ≤ ϕ · ϵ.

Some Necessary Tools

Lemma (Union Bound/Boole’s Inequality)

Let {Ei}ki=1 be a collection of events. Then

P

(
k⋃

i=1

Ei

)
≤

k∑
i=1

P(Ei).

Lemma (Interval Lemma)

Let X be a random variable whose density is bounded from above
by ϕ. Let I be an interval of size at most ϵ. Then

P(X ∈ I) ≤ ϕ · ϵ.

Proof: P(X ∈ I) =
∫
I fX (x)dx ≤ ϕ ·

∫
I dx ≤ ϕ · ϵ.

Strategy of Analysis
Consider a single iteration:

e

f

gh

Improvement:
∆ = wh + wg − we − wf .

Assume wg , we , wf are fixed, so that wg − we − wf = t. Then

P(∆ ≤ ϵ) = P(∆ ∈ (0, ϵ]) = P(wh ∈ (−t,−t + ϵ]).

Strategy of Analysis
Consider a single iteration:

e

f

gh

Improvement:
∆ = wh + wg − we − wf .

Assume wg , we , wf are fixed, so that wg − we − wf = t. Then

P(∆ ≤ ϵ) = P(∆ ∈ (0, ϵ]) = P(wh ∈ (−t,−t + ϵ]).

Strategy of Analysis
Consider a single iteration:

e

f

gh

Improvement:
∆ = wh + wg − we − wf .

Assume wg , we , wf are fixed, so that wg − we − wf = t. Then

P(∆ ≤ ϵ) = P(∆ ∈ (0, ϵ]) = P(wh ∈ (−t,−t + ϵ]).

Bounding the Improvement

e

f

ghDensity of wh:
fh(x) ≤ ϕ for x ∈ [0, 1].

We have (Interval Lemma)

P(∆ ≤ ϵ) = P(wh ∈ (−t,−t + ϵ]) ≤ ϕ · ϵ.

There are m edges, so m2 choices for g and h. Union bound:

Lemma
If ∆min is the improvement of the worst 2-opt step, then
P(∆min ≤ ϵ) = O(m2 · ϕ · ϵ).

Bounding the Improvement

e

f

ghDensity of wh:
fh(x) ≤ ϕ for x ∈ [0, 1].

We have (Interval Lemma)

P(∆ ≤ ϵ) = P(wh ∈ (−t,−t + ϵ]) ≤ ϕ · ϵ.

There are m edges, so m2 choices for g and h. Union bound:

Lemma
If ∆min is the improvement of the worst 2-opt step, then
P(∆min ≤ ϵ) = O(m2 · ϕ · ϵ).

Bounding the Improvement

e

f

ghDensity of wh:
fh(x) ≤ ϕ for x ∈ [0, 1].

We have (Interval Lemma)

P(∆ ≤ ϵ) = P(wh ∈ (−t,−t + ϵ]) ≤ ϕ · ϵ.

There are m edges, so m2 choices for g and h. Union bound:

Lemma
If ∆min is the improvement of the worst 2-opt step, then
P(∆min ≤ ϵ) = O(m2 · ϕ · ϵ).

Completing the Analysis

T : number of iterations to terminate. Then smoothed complexity
= E(T).
Tail sum:

E(T) ≤
n!∑
t=1

P(T ≥ t).

Every tour has length ≤ n, so can take at most n/∆min steps:

P(T ≥ t) ≤ P(t ≤ n/∆min) = P(∆min ≤ n/t) = O(ϕ ·m · n/t).

Thus,

E(T) ≤
n!∑
t=1

O(ϕ ·m · n/t) = O

(
ϕ ·m · n ·

∫ n!

1

1

t
dt

)
= O(ϕ ·m · n2 · log n).

Completing the Analysis

T : number of iterations to terminate. Then smoothed complexity
= E(T).
Tail sum:

E(T) ≤
n!∑
t=1

P(T ≥ t).

Every tour has length ≤ n, so can take at most n/∆min steps:

P(T ≥ t) ≤ P(t ≤ n/∆min) = P(∆min ≤ n/t) = O(ϕ ·m · n/t).

Thus,

E(T) ≤
n!∑
t=1

O(ϕ ·m · n/t) = O

(
ϕ ·m · n ·

∫ n!

1

1

t
dt

)
= O(ϕ ·m · n2 · log n).

Completing the Analysis

T : number of iterations to terminate. Then smoothed complexity
= E(T).
Tail sum:

E(T) ≤
n!∑
t=1

P(T ≥ t).

Every tour has length ≤ n, so can take at most n/∆min steps:

P(T ≥ t) ≤ P(t ≤ n/∆min) = P(∆min ≤ n/t) = O(ϕ ·m · n/t).

Thus,

E(T) ≤
n!∑
t=1

O(ϕ ·m · n/t) = O

(
ϕ ·m · n ·

∫ n!

1

1

t
dt

)
= O(ϕ ·m · n2 · log n).

Completing the Analysis

T : number of iterations to terminate. Then smoothed complexity
= E(T).
Tail sum:

E(T) ≤
n!∑
t=1

P(T ≥ t).

Every tour has length ≤ n, so can take at most n/∆min steps:

P(T ≥ t) ≤ P(t ≤ n/∆min) = P(∆min ≤ n/t) = O(ϕ ·m · n/t).

Thus,

E(T) ≤
n!∑
t=1

O(ϕ ·m · n/t) = O

(
ϕ ·m · n ·

∫ n!

1

1

t
dt

)
= O(ϕ ·m · n2 · log n).

Result

Theorem
The smoothed complexity of 2-opt on general graphs is
O(ϕ ·m · n2 log n).

Considering sequences of iterations:

Theorem (Englert, Röglin & Vöcking)

The smoothed complexity of 2-opt on general graphs is m1+o(1)nϕ.

Result

Theorem
The smoothed complexity of 2-opt on general graphs is
O(ϕ ·m · n2 log n).

Considering sequences of iterations:

Theorem (Englert, Röglin & Vöcking)

The smoothed complexity of 2-opt on general graphs is m1+o(1)nϕ.

Challenges

▶ Bounds are often loose: how close to reality can you get?

▶ Union bound step is often costly: techniques to reduce it?

▶ Smoothed approximation performance.

▶ More complicated heuristics: Lin-Kernighan for TSP?

Challenges

▶ Bounds are often loose: how close to reality can you get?

▶ Union bound step is often costly: techniques to reduce it?

▶ Smoothed approximation performance.

▶ More complicated heuristics: Lin-Kernighan for TSP?

Challenges

▶ Bounds are often loose: how close to reality can you get?

▶ Union bound step is often costly: techniques to reduce it?

▶ Smoothed approximation performance.

▶ More complicated heuristics: Lin-Kernighan for TSP?

Challenges

▶ Bounds are often loose: how close to reality can you get?

▶ Union bound step is often costly: techniques to reduce it?

▶ Smoothed approximation performance.

▶ More complicated heuristics: Lin-Kernighan for TSP?

Concluding Remarks

▶ Powerful method, but can be technically involved.

▶ May give insight into heuristic performance and design.

▶ Very active and relatively young field.

Concluding Remarks

▶ Powerful method, but can be technically involved.

▶ May give insight into heuristic performance and design.

▶ Very active and relatively young field.

Concluding Remarks

▶ Powerful method, but can be technically involved.

▶ May give insight into heuristic performance and design.

▶ Very active and relatively young field.

Bonus: Max-Cut/Flip

Bonus: Max-Cut/Flip

Bonus: Max-Cut/Flip

Bonus: Max-Cut/Flip

Bonus: Max-Cut/Flip

Bonus: Max-Cut/Flip

Bonus: Max-Cut/Flip

Bonus: Max-Cut/Flip

Bonus: Max-Cut/Flip

Naive Analysis

Consider a vertex v that flips. Gain:

∆ =
∑

e={u,v}∈E

λewe , λ ∈ {1,−1}

Assume all we but one we′ are fixed:

∆ = λe′we′ +
∑
e ̸=e′

λewe = we′ + t.

Like in 2-opt:

P(∆ ≤ ϵ) = P(∆ ∈ (0, ϵ]) = P(we′ ∈ (−t,−t + ϵ]) ≤ ϕ · ϵ.

Union bound incurs factor O(nn) → useless.

Naive Analysis

Consider a vertex v that flips. Gain:

∆ =
∑

e={u,v}∈E

λewe , λ ∈ {1,−1}

Assume all we but one we′ are fixed:

∆ = λe′we′ +
∑
e ̸=e′

λewe = we′ + t.

Like in 2-opt:

P(∆ ≤ ϵ) = P(∆ ∈ (0, ϵ]) = P(we′ ∈ (−t,−t + ϵ]) ≤ ϕ · ϵ.

Union bound incurs factor O(nn) → useless.

Naive Analysis

Consider a vertex v that flips. Gain:

∆ =
∑

e={u,v}∈E

λewe , λ ∈ {1,−1}

Assume all we but one we′ are fixed:

∆ = λe′we′ +
∑
e ̸=e′

λewe = we′ + t.

Like in 2-opt:

P(∆ ≤ ϵ) = P(∆ ∈ (0, ϵ]) = P(we′ ∈ (−t,−t + ϵ]) ≤ ϕ · ϵ.

Union bound incurs factor O(nn) → useless.

Naive Analysis

Consider a vertex v that flips. Gain:

∆ =
∑

e={u,v}∈E

λewe , λ ∈ {1,−1}

Assume all we but one we′ are fixed:

∆ = λe′we′ +
∑
e ̸=e′

λewe = we′ + t.

Like in 2-opt:

P(∆ ≤ ϵ) = P(∆ ∈ (0, ϵ]) = P(we′ ∈ (−t,−t + ϵ]) ≤ ϕ · ϵ.

Union bound incurs factor O(nn) → useless.

Smarter Analysis

Consider a sequence of ℓ flips:

S = (v1v2 . . . vℓ).

Suppose some v flips twice in S .

Gain of two flips of v :

∆v = ∆1︸︷︷︸
first flip of v

+ ∆2︸︷︷︸
second flip of v

.

Edge weight {u, v} appears in ∆ ⇐⇒ u flips odd # of times
between flips of v .

Smarter Analysis

Consider a sequence of ℓ flips:

S = (v1v2 . . . vℓ).

Suppose some v flips twice in S .

Gain of two flips of v :

∆v = ∆1︸︷︷︸
first flip of v

+ ∆2︸︷︷︸
second flip of v

.

Edge weight {u, v} appears in ∆ ⇐⇒ u flips odd # of times
between flips of v .

Smarter Analysis

Consider a sequence of ℓ flips:

S = (v1v2 . . . vℓ).

Suppose some v flips twice in S .

Gain of two flips of v :

∆v = ∆1︸︷︷︸
first flip of v

+ ∆2︸︷︷︸
second flip of v

.

Edge weight {u, v} appears in ∆ ⇐⇒ u flips odd # of times
between flips of v .

Smarter Analysis

We now have
∆v =

∑
e={u,v}

u flips off # of times

λewe .

In particular: only active vertices appear in ∆v .

Definition
A k-repeating subsequence of length ℓ is a sequence of flips in
which at least ⌈ℓ/k⌉ vertices flip at least twice.

Lemma (Etscheid & Röglin, 2017)

Any sequence of at least 5n flips contains a ⌈5 log2 n⌉-repeating
subsequence.

Smarter Analysis

We now have
∆v =

∑
e={u,v}

u flips off # of times

λewe .

In particular: only active vertices appear in ∆v .

Definition
A k-repeating subsequence of length ℓ is a sequence of flips in
which at least ⌈ℓ/k⌉ vertices flip at least twice.

Lemma (Etscheid & Röglin, 2017)

Any sequence of at least 5n flips contains a ⌈5 log2 n⌉-repeating
subsequence.

Smarter Analysis

We now have
∆v =

∑
e={u,v}

u flips off # of times

λewe .

In particular: only active vertices appear in ∆v .

Definition
A k-repeating subsequence of length ℓ is a sequence of flips in
which at least ⌈ℓ/k⌉ vertices flip at least twice.

Lemma (Etscheid & Röglin, 2017)

Any sequence of at least 5n flips contains a ⌈5 log2 n⌉-repeating
subsequence.

Smarter Analysis

We now have
∆v =

∑
e={u,v}

u flips off # of times

λewe .

In particular: only active vertices appear in ∆v .

Definition
A k-repeating subsequence of length ℓ is a sequence of flips in
which at least ⌈ℓ/k⌉ vertices flip at least twice.

Lemma (Etscheid & Röglin, 2017)

Any sequence of at least 5n flips contains a ⌈5 log2 n⌉-repeating
subsequence.

Smarter Analysis

Need two more ingredients:

Lemma (Etscheid & Röglin, 2017)

A k-repeating sequence of length ℓ contains at least ⌈ℓ/(2k)⌉
linearly independent pairs of flips.

Lemma (Etscheid & Röglin, 2017)

Let X1 . . .Xm be independent random variables with densities
bounded by ϕ. Let λ1, . . . , λk be linearly independent integral
vectors. Then

P
(
all λT

i X fall into [0, ϵ]
)
≤ (ϵϕ)k .

To apply: λT
i X correspond to ∆v for each v that flips twice in a

k-repeating sequence.

Smarter Analysis

Need two more ingredients:

Lemma (Etscheid & Röglin, 2017)

A k-repeating sequence of length ℓ contains at least ⌈ℓ/(2k)⌉
linearly independent pairs of flips.

Lemma (Etscheid & Röglin, 2017)

Let X1 . . .Xm be independent random variables with densities
bounded by ϕ. Let λ1, . . . , λk be linearly independent integral
vectors. Then

P
(
all λT

i X fall into [0, ϵ]
)
≤ (ϵϕ)k .

To apply: λT
i X correspond to ∆v for each v that flips twice in a

k-repeating sequence.

Smarter Analysis

Need two more ingredients:

Lemma (Etscheid & Röglin, 2017)

A k-repeating sequence of length ℓ contains at least ⌈ℓ/(2k)⌉
linearly independent pairs of flips.

Lemma (Etscheid & Röglin, 2017)

Let X1 . . .Xm be independent random variables with densities
bounded by ϕ. Let λ1, . . . , λk be linearly independent integral
vectors. Then

P
(
all λT

i X fall into [0, ϵ]
)
≤ (ϵϕ)k .

To apply: λT
i X correspond to ∆v for each v that flips twice in a

k-repeating sequence.

Smarter Analysis

Need two more ingredients:

Lemma (Etscheid & Röglin, 2017)

A k-repeating sequence of length ℓ contains at least ⌈ℓ/(2k)⌉
linearly independent pairs of flips.

Lemma (Etscheid & Röglin, 2017)

Let X1 . . .Xm be independent random variables with densities
bounded by ϕ. Let λ1, . . . , λk be linearly independent integral
vectors. Then

P
(
all λT

i X fall into [0, ϵ]
)
≤ (ϵϕ)k .

To apply: λT
i X correspond to ∆v for each v that flips twice in a

k-repeating sequence.

Smarter Analysis

Lemma
Let ∆min be the minimum improvement of any k-repeating
sequence of length ℓ. Then

P(∆ ≤ ϵ) ≤ 2ℓ · nℓ · (ϵϕ)⌈ℓ/(2k)⌉ = (22kn2kϵϕ)⌈ℓ/(2k)⌉.

Proof.
Fix a k-repeating sequence S . Since there are at least ⌈ℓ/(2k)⌉
linearly independent pairs of flips in S , probability that all pairs
yield an improvement ≤ ϵ is at most (ϵϕ)⌈ℓ/(2k)⌉. Union bound
over nℓ different sequences of length ℓ and all 2ℓ starting
configurations finishes the proof.

Smarter Analysis

Lemma
Let ∆min be the minimum improvement of any k-repeating
sequence of length ℓ. Then

P(∆ ≤ ϵ) ≤ 2ℓ · nℓ · (ϵϕ)⌈ℓ/(2k)⌉ = (22kn2kϵϕ)⌈ℓ/(2k)⌉.

Proof.
Fix a k-repeating sequence S . Since there are at least ⌈ℓ/(2k)⌉
linearly independent pairs of flips in S , probability that all pairs
yield an improvement ≤ ϵ is at most (ϵϕ)⌈ℓ/(2k)⌉. Union bound
over nℓ different sequences of length ℓ and all 2ℓ starting
configurations finishes the proof.

Finalizing the Proof

Theorem
The smoothed complexity of Max-Cut/Flip is nO(log n).

Proof.
Fix any sequence of steps. Since any sequence of 5n steps contains
a ⌈5 log2 n⌉-repeating subsequence, we split the sequence into
blocks of 5n, and identify such a subsequence in each. The
probability that any of these sequences improves the cut by at
most ϵ is then at most (2⌈5 log2 n⌉n5⌈log2 n⌉ϵϕ)n/ log2 n. Write T for
the number of iterations until Flip terminates. Then (cf. 2-opt)

P(T ≥ t) ≤ (2⌈5 log2 n⌉n5⌈log2 n⌉n2ϕ/t)n/ log2 n.

The rest of the proof is analogous to 2-opt.

Finalizing the Proof

Theorem
The smoothed complexity of Max-Cut/Flip is nO(log n).

Proof.
Fix any sequence of steps. Since any sequence of 5n steps contains
a ⌈5 log2 n⌉-repeating subsequence, we split the sequence into
blocks of 5n, and identify such a subsequence in each. The
probability that any of these sequences improves the cut by at
most ϵ is then at most (2⌈5 log2 n⌉n5⌈log2 n⌉ϵϕ)n/ log2 n. Write T for
the number of iterations until Flip terminates. Then (cf. 2-opt)

P(T ≥ t) ≤ (2⌈5 log2 n⌉n5⌈log2 n⌉n2ϕ/t)n/ log2 n.

The rest of the proof is analogous to 2-opt.

	Introduction
	Local Search
	Questions
	Example Analysis of 2-Opt

