Smoothed Analysis of Local Search

Jesse van Rhijn
University of Twente

February 8, 2023



2-Opt and TSP



2-Opt and TSP



2-Opt and TSP



2-Opt and TSP



2-Opt and TSP



2-Opt and TSP



2-Opt and TSP



2-Opt and TSP



2-Opt and TSP



2-Opt and TSP

theoretical

practical

F#titerations approximation ratio

|
29(n) O(log n), Q(Iogolig;n)
(Englert, Roglin, Vocking) (Chandra, Karloff, Tovey)
o(n?) 1.05

(Johnson, McGeoch)



Worst Case Analysis

Standard measure of algorithm performance.

T

Formally: W(n) = maxjez, T(/).



Worst Case Analysis

Standard measure of algorithm performance.

T

Formally: W(n) = max;ez, T(1).



Worst Case Analysis

Standard measure of algorithm performance.

T

Formally: W(n) = maxjez, T(/).

Advantage: strong guarantee on performance.



Worst Case Analysis

Standard measure of algorithm performance.

T

Formally: W(n) = maxjez, T(/).

Advantage: strong guarantee on performance.
Disadvantage: may be overly pessimistic.



Average Case Analysis

Possible solution to pessimism.

T

Formally: A(n) =E;.,(T(/)).



Average Case Analysis

Possible solution to pessimism.

T

Formally: A(n) =E;~, (T(1)).



Average Case Analysis

Possible solution to pessimism.

T

Formally: A(n) =E;.,(T(/)).

Advantage: reduced impact of pathologies.



Average Case Analysis

Possible solution to pessimism.

T

Formally: A(n) =E;.,(T(/)).

Advantage: reduced impact of pathologies.
Disadvantage: may be unrealistic, choice of 7.



Average Case Shortcomings




Smoothed Analysis

Smoothed analysis: random perturbations of worst case instances.

T

Formally: S(n,o) = maxjez, Egr, (T(/,8)).



Smoothed Analysis

Smoothed analysis: random perturbations of worst case instances.

T

Formally: S(n, o) = maxjcz, Egr, (T (1, g)).



Smoothed Analysis

Smoothed analysis: random perturbations of worst case instances.

T

Formally: S(n,o) = maxjez, Egr, (T(/,8)).

Combines average case and worst case analysis.



Smoothed Analysis: Original and Perturbed




Moving Between W and A

Smoothed complexity is parametrized by o.

Allows interpolation between worst/average case.

T




Moving Between W and A

Smoothed complexity is parametrized by o.

Allows interpolation between worst/average case.

T




Two-Step and One-Step Models

Most common models of SA:

» Two step model: take an arbitrary input and perturb it (by
Gaussians).

» One step model: draw numbers in the input from independent
bounded probability densities.

Two step model is parametrized by o, one step model by ¢ > 1.

Rough correspondence: ¢ ~ o~ L.



Two-Step and One-Step Models

Most common models of SA:

» Two step model: take an arbitrary input and perturb it (by
Gaussians).

» One step model: draw numbers in the input from independent
bounded probability densities.

Two step model is parametrized by o, one step model by ¢ > 1.

Rough correspondence: ¢ ~ o~ L.



Two-Step and One-Step Models

Most common models of SA:

» Two step model: take an arbitrary input and perturb it (by
Gaussians).

» One step model: draw numbers in the input from independent
bounded probability densities.

Two step model is parametrized by o, one step model by ¢ > 1.

Rough correspondence: ¢ ~ o~ L.



Two-Step and One-Step Models

Most common models of SA:

» Two step model: take an arbitrary input and perturb it (by
Gaussians).

» One step model: draw numbers in the input from independent
bounded probability densities.

Two step model is parametrized by o, one step model by ¢ > 1.

Rough correspondence: ¢ ~ o~ L.



Two-Step and One-Step Models

Most common models of SA:

» Two step model: take an arbitrary input and perturb it (by
Gaussians).

» One step model: draw numbers in the input from independent
bounded probability densities.

Two step model is parametrized by o, one step model by ¢ > 1.

Rough correspondence: ¢ ~ o~ 1.




Comparing the Models: Weighted Graphs

g
Weights: w(e) ~ fo, w(g) ~ fg, etc.

> f,fgﬁ
> w

e P
w(e), w(g) are independent!

Metric instances?



Comparing the Models: Weighted Graphs

g

Weights: w(e) ~ fo, w(g) ~ fg, etc.

fe, fg < 0.
w(e), w(g

) are independent!

Metric instances?



Comparing the Models: Weighted Graphs

g
Weights: w(e) ~ fo, w(g) ~ fg, etc.

| 2 fesfg < .
> w(e), w

o
(g) are independent!

Metric instances?



Comparing the Models: Weighted Graphs

g
Weights: w(e) ~ fo, w(g) ~ fg, etc.

> f,fg§
> w

e 10)
w(e), w(g) are independent!

Metric instances?



Comparing the Models: Weighted Graphs




Comparing the Models: Weighted Graphs

Perturbations: usually Gaussian.



Comparing the Models: Weighted Graphs

X3

X2

Perturbations: usually Gaussian.

Weights: w(e) = d(x2, x3), w(g) = d(x1, x2).



Questions

Intermezzo: questions?




Local Search

Local search: simple combinatorial optimization paradigm.

For a solution x, define a neighborhood N(x) of better solutions.
Choose some y € N(x) as the new solution.

Continue until neighborhood is empty — local optimum.

Ingredients:
» Neighborhood: what solutions are neighbors?
» Pivot rule: how to select next solution?
» Initialization: how to compute starting solution?

» Cost: how to compare solutions?

u}
o)
I
i
it




Local Search

Local search: simple combinatorial optimization paradigm.

For a solution x, define a neighborhood N(x) of better solutions.

Choose some y € N(x) as the new solution.
Continue until neighborhood is empty — local optimum.

Ingredients:
» Neighborhood: what solutions are neighbors?
» Pivot rule: how to select next solution?
» Initialization: how to compute starting solution?

» Cost: how to compare solutions?



Local Search

Local search: simple combinatorial optimization paradigm.

For a solution x, define a neighborhood N(x) of better solutions.

Choose some y € N(x) as the new solution.
Continue until neighborhood is empty — local optimum.

Ingredients:
» Neighborhood: what solutions are neighbors?
» Pivot rule: how to select next solution?
» Initialization: how to compute starting solution?

» Cost: how to compare solutions?



Local Search

Local search: simple combinatorial optimization paradigm.

For a solution x, define a neighborhood N(x) of better solutions.
Choose some y € N(x) as the new solution.

Continue until neighborhood is empty — local optimum.

Ingredients:
» Neighborhood: what solutions are neighbors?
» Pivot rule: how to select next solution?
» Initialization: how to compute starting solution?

» Cost: how to compare solutions?

u}
o)
I
i
it




Local Search

Local search: simple combinatorial optimization paradigm.

For a solution x, define a neighborhood N(x) of better solutions.

Choose some y € N(x) as the new solution.
Continue until neighborhood is empty — local optimum.

Ingredients:
» Neighborhood: what solutions are neighbors?
» Pivot rule: how to select next solution?
» Initialization: how to compute starting solution?

» Cost: how to compare solutions?



Local Search

Local search: simple combinatorial optimization paradigm.

For a solution x, define a neighborhood N(x) of better solutions.
Choose some y € N(x) as the new solution.

Continue until neighborhood is empty — local optimum.

Ingredients:
» Neighborhood: what solutions are neighbors?
» Pivot rule: how to select next solution?
» Initialization: how to compute starting solution?

» Cost: how to compare solutions?

u}
o)
I
i
it




Local Search

Local search: simple combinatorial optimization paradigm.

For a solution x, define a neighborhood N(x) of better solutions.

Choose some y € N(x) as the new solution.
Continue until neighborhood is empty — local optimum.

Ingredients:
» Neighborhood: what solutions are neighbors?
» Pivot rule: how to select next solution?
» Initialization: how to compute starting solution?

» Cost: how to compare solutions?



Local Search

Local search: simple combinatorial optimization paradigm.

For a solution x, define a neighborhood N(x) of better solutions.
Choose some y € N(x) as the new solution.

Continue until neighborhood is empty — local optimum.

Ingredients:
» Neighborhood: what solutions are neighbors?
» Pivot rule: how to select next solution?
» Initialization: how to compute starting solution?

» Cost: how to compare solutions?

u}
o)
I
i
it




Local Search

Local search: simple combinatorial optimization paradigm.

For a solution x, define a neighborhood N(x) of better solutions.

Choose some y € N(x) as the new solution.
Continue until neighborhood is empty — local optimum.

Ingredients:
» Neighborhood: what solutions are neighbors?
» Pivot rule: how to select next solution?
» Initialization: how to compute starting solution?

» Cost: how to compare solutions?



Local Search: 2-Opt



Local Search: 2-Opt



Local Search: 2-Opt



Local Search: 2-Opt



Local Search: 2-Opt



Local Search: 2-Opt



Local Search: 2-Opt



Local Search: 2-Opt



Local Search: 2-Opt



Local Search: 2-Opt



Local Search: 2-Opt

Theorem (Englert, Roglin & Vocking)

There exist instances of 2-opt where the heuristic may take 22(")
iterations to converge.



Local Search: 2-Opt

Theorem (Englert, Roglin & Vocking)

There exist instances of 2-opt where the heuristic may take 22(")
iterations to converge.

Theorem (Englert, Roglin & Vécking)
The smoothed complexity of 2-opt on general graphs is m*+t°() ng.



Local Search: 2-Opt

Theorem (Englert, Roglin & Vocking)

There exist instances of 2-opt where the heuristic may take 22(")
iterations to converge.

Theorem (Englert, Roglin & Vécking)

The smoothed complexity of 2-opt on general graphs is m*t°(M)ng.

Theorem (Manthey & van Rhijn)

The smoothed complexity of 2-opt on Euclidean graphs is
1
O(n*t3/0?).



Local Search: FLIP for MAX-CUT

Definition (MAX-CUT)
Input: weighted graph G = (V, E, w).
Goal: find a set S C V such that

is maximized.

Theorem
MAX-CUT is NP-hard.



Local Search: FLIP for MAX-CUT

Definition (MAX-CUT)
Input: weighted graph G = (V, E, w).
Goal: find a set S C V such that

is maximized.

Theorem
MAX-CUT is NP-hard.



Local Search: Flip for MAX-CUT

\/




Local Search: Flip for MAX-CUT




Local Search: Flip for MAX-CUT




Local Search: Flip for MAX-CUT




Local Search: Flip for MAX-CUT

N




Local Search: Flip for MAX-CUT

N




Local Search: Flip for MAX-CUT

N
)




Local Search: Flip for MAX-CUT

N
/




Local Search: Flip for MAX-CUT




Local Search: Flip for MAX-CUT

Theorem (Schaffer & Yannakakis)

There exist instances of MAX-CUT on which every run of Flip has
exponential length.



Local Search: Flip for MAX-CUT

Theorem (Schaffer & Yannakakis)

There exist instances of MAX-CUT on which every run of Flip has
exponential length.

Theorem (Bibak, Carlson & Chandrasekaran)

The smoothed complexity of the Flip heuristic is O(n"8*¢) for
complete graphs.



Local Search: Flip for MAX-CUT

Theorem (Schaffer & Yannakakis)

There exist instances of MAX-CUT on which every run of Flip has
exponential length.

Theorem (Bibak, Carlson & Chandrasekaran)

The smoothed complexity of the Flip heuristic is O(n"-84¢) for
complete graphs.

Ongoing work: general (non-complete) graphs, MAX-k-CUT.



Local Search: Lloyd for k-means

Definition (k-means clustering)

Input: a set of points X C RY, an integer k > 0.
Goal: find a partition {C;}¥_; of X such that

k
2.2 lx=al?
i=1 xe(;
is minimized, where ¢; = ﬁ > xec; X (center of mass).
1

Theorem
k-means clustering is NP-hard.



Local Search: Lloyd for k-means

Definition (k-means clustering)

Input: a set of points X C RY, an integer k > 0.
Goal: find a partition {C;}%_; of X such that

i > lx—cil?

i=1 xe(;
is minimized, where ¢; = ﬁ > xec, X (center of mass)
i i
Theorem

k-means clustering is NP-hard.




Local Search: k-means Clustering



Local Search: k-means Clustering



Local Search: k-means Clustering



Local Search: k-means Clustering




Local Search: k-means Clustering



Local Search: k-means Clustering



Local Search: k-means Clustering



Local Search: k-means Clustering

° @
L Rl
° oooo o o
o%° ° o °
o® ° ®
° . &
O... ' (]
® )
® ®
®
.. o P



Local Search: k-means Clustering

° @
L Rl
° oooo o o
o%° ° o °
o® ° ®
° . &
O... ' (]
® )
® ®
®
.. o P



Local Search: k-means Clustering

Theorem (Vattani)

There exist instances of k-means that require 2(") jterations, even
in the plane.



Local Search: k-means Clustering

Theorem (Vattani)

There exist instances of k-means that require 2%(n) iterations, even
in the plane.

Theorem (Arthur, Manthey & Rdoglin)
The smoothed complexity of k-means is O(n**k3*/a%).



Local Search: k-means Clustering

Theorem (Vattani)

There exist instances of k-means that require 2(") jterations, even
in the plane.

Theorem (Arthur, Manthey & Rdoglin)

The smoothed complexity of k-means is O(n3*k3*/o9).

Open: different norms.



Questions

Intermezzo: questions?



Reminder: 2-Opt



Reminder: 2-Opt



Reminder: 2-Opt



Reminder: 2-Opt



Reminder: 2-Opt



Reminder: 2-Opt



Reminder: 2-Opt



Reminder: 2-Opt



Reminder: 2-Opt



Reminder: 2-Opt



Analyze in the One-Step Model

|V|=nand |E| =m.
Weights: w(e) ~ fo, w(g) ~ fg, etc., with weights in [0, 1].

Potential argument: if all steps improve tour by at least A, > 0,
how long before we terminate?




Analyze in the One-Step Model

|V|=nand |E| = m.
Weights: w(e) ~ fo, w(g) ~ fg, etc., with weights in [0, 1].

Potential argument: if all steps improve tour by at least A, > 0,
how long before we terminate?




Analyze in the One-Step Model

|V|=nand |E| = m.
Weights: w(e) ~ fo, w(g) ~ fg, etc., with weights in [0, 1].

Potential argument: if all steps improve tour by at least Ay > 0,
how long before we terminate?




Some Necessary Tools

Lemma (Union Bound/Boole's Inequality)
Let {E;}%_, be a collection of events. Then

k
P (0 E,-> < ZIP’(E,-).
i=1 i=1

Lemma (Interval Lemma)

Let X be a random variable whose density is bounded from above
by ¢. Let | be an interval of size at most €. Then

P(Xel)<¢-e

Proof: P(X € ) = [, fx(x)dx < ¢ - [;dx < ¢ - €. O



Some Necessary Tools

Lemma (Union Bound/Boole's Inequality)
Let {E;}%_| be a collection of events. Then

Lemma (Interval Lemma)

Let X be a random variable whose density is bounded from above
by ¢. Let | be an interval of size at most €. Then

P(Xel)<¢-e

Proof: P(X € I) = [, fx(x)dx < ¢- [;dx < ¢ - €. O



Strategy of Analysis

Consider a single iteration:

Improvement:
A= wp + Wy — We — Wr.

Assume wg, We, wr are fixed, so that wy — we — wr = t. Then

P(A <€) =P(A € (0,¢]) =P(wp € (—t, —t + €]).



Strategy of Analysis

Consider a single iteration:

Improvement:
A= wp+ wy — we — wy.

Assume wg, We, wr are fixed, so that wy — we — wr = t. Then

P(A <€) =P(A € (0,¢]) =P(wp € (—t, —t + €]).



Strategy of Analysis

Consider a single iteration:

— ' .

@o—@

Improvement:
A= wp + Wy — We — Wr.

Assume w,, we, wr are fixed, so that w, — we — wr = t. Then

P(A <e)=P(A €(0,¢]) =P(wy € (—t, —t + €]).



Bounding the Improvement

Density of wy: h ég g
fa(x) < ¢ for xe€][0,1].

We have (Interval Lemma)

P(A <€) =P(w, € (—t,—t+¢]) < ¢-e.

There are m edges, so m? choices for g and h. Union bound:
Lemma

If Anin s the improvement of the worst 2-opt step, then
P(Apin <€) = O(m2 ¢ - €).



Bounding the Improvement

Density of wy: h gg g
fn(x) < ¢ for xe]l0,1].

We have (Interval Lemma)

P(A<e)=P(wp e (—t,—t+¢)<¢-e

There are m edges, so m? choices for g and h. Union bound:

Lemma

If Anin s the improvement of the worst 2-opt step, then
P(Apin <€) = O(m? - ¢ -¢).



Bounding the Improvement

Density of wy: h ;Z g

f(x) < ¢ for xec|0,1]. ="

We have (Interval Lemma)

P(A<e)=P(wpe(—t,—t+¢])<o-ec

There are m edges, so m? choices for g and h. Union bound:

Lemma

If Apin is the improvement of the worst 2-opt step, then
P(Apin <€) = O(m? - ¢ -¢).



Completing the Analysis
T: number of iterations to terminate. Then smoothed complexity
=E(T).
Tail sum:
n!

E(T) <) P(T >1t).

t=1
Every tour has length < n, so can take at most n/An, steps:

P(T > t) < P(t < n/Amin) = P(Amin < n/t) = O(¢- m - n/t).

Thus,

n!

E(T)SZO(¢'m'”/f)=O<O~m~n-/1n! 1dt)

t=1

= O(¢-m-n*-logn).



Completing the Analysis

— K(T).

T: number of iterations to terminate. Then smoothed complexity
Tail sum:

MUSiMDM-
t=1

Every tour has length < n, so can take at most n/A, Steps
P(T >

(T >1t) <P(t <n/Apin) = P(Amin < n/t)
Thus,

(6 m-n/t).
B(T) <> 0(¢-m-n/t)=0
t=1



Completing the Analysis
T: number of iterations to terminate. Then smoothed complexity
=E(T).
Tail sum:
n!

E(T) <) P(T >1t).

t=1

Every tour has length < n, so can take at most n/Ap, steps:

P(T > t) <P(t < n/Amin) = P(Amin < n/t) = O0(¢p-m-n/t).

Thus,

n!

E(T)SZO(@'m'”/f)=O<O'm~n-/ln! 1dt)

t=1
= O(¢-m-n*-logn).



Completing the Analysis

T: number of iterations to terminate. Then smoothed complexity

=E(T).
Tail sum: |
n!

E(T) <) P(T >1t).

t=1
Every tour has length < n, so can take at most n/An, steps:

P(T > t) < P(t < n/Amin) = P(Amin < n/t) = O(¢- m - n/t).

Thus,

E(T)sio<¢-m-n/r)=o(¢‘m-n-/l"!%dt)

t=1
= 0(¢-m-n?-logn).



Result

Theorem
The smoothed complexity of 2-opt on general graphs is
O(¢ - m- n*logn).



Result

Theorem
The smoothed complexity of 2-opt on general graphs is
O(¢ - m- n?log n).

Considering sequences of iterations:

Theorem (Englert, Roglin & Vécking)
The smoothed complexity of 2-opt on general graphs is m*t°() pg.



Challenges

» Bounds are often loose: how close to reality can you get?
» Union bound step is often costly: techniques to reduce it?
» Smoothed approximation performance.

» More complicated heuristics: Lin-Kernighan for TSP?



Challenges

» Bounds are often loose: how close to reality can you get?
» Union bound step is often costly: techniques to reduce it?
» Smoothed approximation performance.

» More complicated heuristics: Lin-Kernighan for TSP?



Challenges

» Bounds are often loose: how close to reality can you get?
» Union bound step is often costly: techniques to reduce it?
» Smoothed approximation performance.

» More complicated heuristics: Lin-Kernighan for TSP?

u}
o)
I
i
it




Challenges

» Bounds are often loose: how close to reality can you get?
» Union bound step is often costly: techniques to reduce it?
» Smoothed approximation performance.

» More complicated heuristics: Lin-Kernighan for TSP?



Concluding Remarks

» Powerful method, but can be technically involved.
» May give insight into heuristic performance and design.

» Very active and relatively young field.



Concluding Remarks

» Powerful method, but can be technically involved.
» May give insight into heuristic performance and design.

» Very active and relatively young field.



Concluding Remarks

» Powerful method, but can be technically involved.
» May give insight into heuristic performance and design.

» Very active and relatively young field.



Bonus: Max-Cut/Flip

\/




Bonus: Max-Cut/Flip




Bonus: Max-Cut/Flip




Bonus: Max-Cut/Flip




Bonus: Max-Cut/Flip




Bonus: Max-Cut/Flip




Bonus: Max-Cut/Flip

N
)




Bonus: Max-Cut/Flip

N
/




Bonus: Max-Cut/Flip




Naive Analysis

Consider a vertex v that flips. Gain:

A= > dewe, Ae{l,-1}
e={u,v}€E

Assume all w,e but one w, are fixed:

A= \gWe + Z AeWe = Wer + t.
e#e!

Like in 2-opt:
P(A <e)=P(A €(0,¢]) =P(wer € (—t,—t+¢€]) < ¢-e.

Union bound incurs factor O(n") — useless.



Naive Analysis

Consider a vertex v that flips. Gain:

A= > dewe, Ae{l,-1}
e={u,v}€E

Assume all we but one w,r are fixed:

A= g W + Z AeWe = We + t.
e#e’

Like in 2-opt:
P(A <e)=P(A €(0,¢]) =P(wer € (—t,—t+¢€]) < ¢-e.

Union bound incurs factor O(n") — useless.



Naive Analysis

Consider a vertex v that flips. Gain:

.
e={u,v}€E

AeWe,
Assume all w, but one w,s are fixed:

e#e!
Like in 2-opt:

Ae{l,-1}

A= \gWe + Z AeWe = Wer + t.

P(A <e)=P(A€(0,¢]) =P(wer € (—t,—t+¢€]) < o-e

Union bound incurs factor O(n") — useless.



Naive Analysis

Consider a vertex v that flips. Gain:

.
e={u,v}€E

AeWe,
Assume all w, but one w,s are fixed:

Ae{l,-1}

A= \gWe + Z AeWe = Wer + t.

e#e!
Like in 2-opt:

P(A <e)=P(A €(0,¢]) =P(wer € (—t,—t+¢€]) < ¢-e.

Union bound incurs factor O(n") — useless.



Smarter Analysis

Consider a sequence of /¢ flips:

S=(viva...v)
Suppose some v flips twice in S.

Gain of two flips of v:

A, = Aq + JAD)
—~— —~~
first flip of v second flip of v
Edge weight {u, v} appears in A <= u flips odd # of times
between flips of v.




Smarter Analysis

Consider a sequence of / flips:
S=(wva...v).

Suppose some v flips twice in S.

Gain of two flips of v:

Av = + A2

Aq

~—~ ~—
first flip of v second flip of v
Edge weight {u, v} appears in A <= u flips odd # of times
between flips of v.



Smarter Analysis

Consider a sequence of / flips:
S=(wva...v).

Suppose some v flips twice in S.

Gain of two flips of v:

A, = Ay + As
~—~ ~—
first flip of v second flip of v

Edge weight {u, v} appears in A <= u flips odd # of times
between flips of v.



Smarter Analysis

We now have

A, = Z AeWe.

e={u,v}

u flips off # of times
In particular: only active vertices appear in A, .
Definition
A k-repeating subsequence of length £ is a sequence of flips in
which at least [¢/k] vertices flip at least twice.
Lemma (Etscheid & Raglin, 2017)

Any sequence of at least 5n flips contains a |5 log, n|-repeating
subsequence.

u}
o)
I
i
it




Smarter Analysis

We now have

Av — Z )\eWe-

e={u,v}

u flips off # of times
In particular: only active vertices appear in A,.
Definition
A k-repeating subsequence of length £ is a sequence of flips in
which at least [¢/k] vertices flip at least twice.
Lemma (Etscheid & Raglin, 2017)

Any sequence of at least 5n flips contains a |5 log, n|-repeating
subsequence.

u}
o)
I
i
it




Smarter Analysis

We now have

A, = Z AeWe.

e={u,v}

u flips off # of times
In particular: only active vertices appear in A, .
Definition
A k-repeating subsequence of length £ is a sequence of flips in
which at least [¢/k] vertices flip at least twice.
Lemma (Etscheid & Raglin, 2017)

Any sequence of at least 5n flips contains a [5 log, n|-repeating
subsequence.



Smarter Analysis

We now have

A, = Z AeWe.

e={u,v}

u flips off # of times
In particular: only active vertices appear in A, .
Definition
A k-repeating subsequence of length £ is a sequence of flips in
which at least [¢/k] vertices flip at least twice.

Lemma (Etscheid & Raglin, 2017)

Any sequence of at least 5n flips contains a [5log, n|-repeating
subsequence.



Smarter Analysis

Need two more ingredients:

Lemma (Etscheid & Roglin, 2017)
A k-repeating sequence of length ¢ contains at least [¢/(2k)]
linearly independent pairs of flips.

Lemma (Etscheid & Raglin, 2017)

Let Xy ... X, be independent random variables with densities
bounded by ¢. Let A1, ...,k be linearly independent integral
vectors. Then

P (a// A X fall into [o,e]) < (ed)*.

To apply: )\,-TX correspond to A, for each v that flips twice in a
k-repeating sequence.



Smarter Analysis

Need two more ingredients:

Lemma (Etscheid & Roglin, 2017)
A k-repeating sequence of length ¢ contains at least [¢/(2k)]
linearly independent pairs of flips.

Lemma (Etscheid & Roglin, 2017)

Let Xy ... X, be independent random variables with densities
bounded by ¢. Let \1,..., ¢ be linearly independent integral
vectors. Then

P <a// A X fall into [0, e]) < (ed)*.

To apply: )\,-TX correspond to A, for each v that flips twice in a
k-repeating sequence.



Smarter Analysis

Need two more ingredients:

Lemma (Etscheid & Roglin, 2017)
A k-repeating sequence of length ¢ contains at least [¢/(2k)]
linearly independent pairs of flips.

Lemma (Etscheid & Roglin, 2017)

Let Xi... Xy, be independent random variables with densities
bounded by ¢. Let A1, ..., A\ be linearly independent integral
vectors. Then

P (a// AT X fall into [o,e]) < (ed)*.

To apply: )\,-TX correspond to A, for each v that flips twice in a
k-repeating sequence.



Smarter Analysis

Need two more ingredients:

Lemma (Etscheid & Roglin, 2017)
A k-repeating sequence of length ¢ contains at least [¢/(2k)]
linearly independent pairs of flips.

Lemma (Etscheid & Raglin, 2017)

Let Xy ... X, be independent random variables with densities
bounded by ¢. Let \1,..., ¢ be linearly independent integral
vectors. Then

P <a// A X fall into [0, e]) < (ed)*.

To apply: )\,TX correspond to A, for each v that flips twice in a
k-repeating sequence.



Smarter Analysis

Lemma
Let Apin be the minimum improvement of any k-repeating
sequence of length £. Then

P(A <€) <2 nt - (eg)[V/CRT = (22K p2k ) [€/ (KT

Proof.

Fix a k-repeating sequence S. Since there are at least [¢/(2k)]
linearly independent pairs of flips in S, probability that all pairs
yield an improvement < ¢ is at most (e¢)[*/2K1. Union bound
over n’ different sequences of length ¢ and all 2¢ starting
configurations finishes the proof.



Smarter Analysis

Lemma
Let Ap,in be the minimum improvement of any k-repeating
sequence of length {. Then

P(A <€) < 20 nf - (eg) PN = (22K gt/ 2N

Proof.

Fix a k-repeating sequence S. Since there are at least [¢/(2k)]
linearly independent pairs of flips in S, probability that all pairs
yield an improvement < ¢ is at most (e¢)[¢/(2K)1. Union bound
over n® different sequences of length ¢ and all 2¢ starting
configurations finishes the proof.



Finalizing the Proof

Theorem
The smoothed complexity of Max-Cut/Flip is nOllogn),

Proof.

Fix any sequence of steps. Since any sequence of 5n steps contains
a [5log, nl-repeating subsequence, we split the sequence into
blocks of 5n, and identify such a subsequence in each. The
probability that any of these sequences improves the cut by at
most ¢ is then at most (21298271 pdllog2 nlepyn/logan \Write T for
the number of iterations until Flip terminates. Then (cf. 2-opt)

[P)(T > l') < (2[5I0g2 n| n5[|og2 n| n2<Z>/t)”/ logy n_

The rest of the proof is analogous to 2-opt. []

u}
o)
I
i
it
N
»
?



Finalizing the Proof

Theorem
The smoothed complexity of Max-Cut/Flip is n®(°en).

Proof.

Fix any sequence of steps. Since any sequence of 5n steps contains
a [5log, nl-repeating subsequence, we split the sequence into
blocks of 5n, and identify such a subsequence in each. The
probability that any of these sequences improves the cut by at
most € is then at most (2[%182 71 p5llogz nlep)n/logan \Write T for
the number of iterations until Flip terminates. Then (cf. 2-opt)

P(T >t)< (2[5 log, n] ,5[logs n] n2¢/t)"/ logy -

The rest of the proof is analogous to 2-opt. O



	Introduction
	Local Search
	Questions
	Example Analysis of 2-Opt

