
Mark de Berg (TU Eindhoven)

Stable Approximation Schemes



Talk Overview

Broadcast
Range

Assignment

Stable
Algorithms

Independent
Set



Broadcast
Range

Assignment

Stable
Algorithms

Independent
Set

Stable Approximation Schemes
Basic Terminology and Relations to Existing Concepts
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• define dynamic model
– insertion-only, or fully dynamic, or deletion-only
– define what an insertion/deletion means

for graphs:

vertex-arrival model edge-arrival model
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The framework

• define dynamic model
– insertion-only, or fully dynamic, or deletion-only
– define what an insertion/deletion means

• define “edit distance” between any two (not necessarily optimal) solutions

Example: Independent Set

solution I1 before
arrival of vertex v

solution I2 after
arrival of vertex v

edit distance := |I1∆I2|

v
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The framework

• define dynamic model
– insertion-only, or fully dynamic, or deletion-only
– define what an insertion/deletion means

• define “edit distance” between any two (not necessarily optimal) solutions

Definition. A k-stable α-approximation algorithm maintains a feasible
solution such that

• the edit distance between the solutions before and after each update
(insertion or deletion) is at most k

• the maintained solution is an α-approximation of an optimal solution at
all times

Stable Algorithms



Stable Approximation Schemes (SAS)

We would like a trade-off between stability and approximation ratio.

Definition. A stable approximation scheme (SAS) is an algorithm that, for
any given parameter ε > 0,

• is kε-stable, where kε only depends on ε (not on the input size)

• gives a (1 + ε)-approximation
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Related concepts

• online algorithms, which process sequence σ of insertions
– decisions are irrevocable
– competitive ratio instead of approximation ratio

Alg(σ) = value of solution computed by online algorithm

Optoffline(σ) = value of solution computed by optimal offline algorithm
(algorithm knows σ in advance, but must still handle
insertions in online manner)

Opt(σ) = value of optimal solution on final input (static optimum)

approximation ratio =
Alg(σ)

Opt(σ)
competitive ratio ≈

Optoffline(σ)

Alg(σ)
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• online algorithms, which process sequence σ of insertions
– decisions are irrevocable
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• online algorithms with bounded recourse
– recourse ≈ stability
– analysis often still uses competitive ratio (?)

• robust PTAS: similar to our SAS

• local-search PTAS
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Related concepts

• online algorithms, which process sequence σ of insertions
– decisions are irrevocable
– competitive ratio instead of approximation ratio

• online algorithms with bounded recourse
– recourse ≈ stability
– analysis often still uses competitive ratio (?)

• robust PTAS: similar to our SAS

• local-search PTAS

We typically do not care about computation time, and
focus on trade-off between stability and approximation ratio.

Stable Algorithms and Stable Approximation Schemes
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• P = {p0, . . . , pn−1}: set of n points in R2 (devices in wireless network)
• range(pi): transmission range of pi

The range-assignment problem

p0

p1

• range assignment induces communication graph

• cost of range assignment =
∑
i range(pi)

α

distance-power gradient
practice: 1 6 α 6 6

from now on: α = 2



• P = {p0, . . . , pn−1}: set of n points in R2 (devices in wireless network)
• range(pi): transmission range of pi

The range-assignment problem

p0

• range assignment induces communication graph

• cost of range assignment =
∑
i range(pi)

α

p1

range-assignment problem: assign ranges so that communication graph has
certain properties, while minimizing cost
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The broadcast range-assignment problem

broadcast range-assignment problem: assign ranges so that communication
graph has broadcast tree from given source p0, while minimizing cost

source = p0

• polynomial-time solvable in R1 [Clementi et al.]

• NP-hard in R2, O(1)-approximation [Clementi et al., Fuchs, Wan et al.]

• APX-hard in R3 [Fuchs]
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The dynamic broadcast range-assignment problem

Dynamic version

• source is fixed
• points arrive one by one (and may also be deleted)
• when point arrives it initially gets range zero
• edit distance = number of points whose range changes

Example in R1 (online algorithm that does not decrease any ranges)

s

• cost = 32 + 12 + 12 = 11
• Opt = 9
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The dynamic broadcast range-assignment problem

Dynamic version

• source is fixed
• points arrive one by one (and may also be deleted)
• when point arrives it initially gets range zero
• edit distance = number of points whose range changes

Example in R1

s

online algorithm without recourse can have arbitrarily bad approximation ratio

s

• Optoffline = n2 without recourse
• Opt = n



Stable algorithms for the dynamic broadcast range-assignment problem

Our results [dB-Sadhukhan-Spieksma, SWAT ’22]

In R1

• there is a SAS with kε = O(1/ε), which is optimal
• various algorithm with very small stability parameter

– 1-stable (6 + 2
√

5)-approximation algorithm
– 2-stable 2-approximation algorithm
– 3-stable 1.97 approximation algorithm

In S1

• structure of optimal solution is essentially the same as in R1

• SAS does not exist

In R2

• SAS does not exist
• 17-stable 12-approximation algorithm
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A Stable Approximation Scheme (SAS) in R1

[Caragiannis-Kaklamanis-Kanellopoulos ISAAC 2002]

Note: there can be more edges in the communication graph.

Theorem. There is always a broadcast tree with the following structure.

= standard-range points

= single root-crossing point

= zero-range points
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A Stable Approximation Scheme (SAS) in R1

= standard-range points = root-crossing point = zero-range points

structure of optimal solution

Analysis of stability

• root-crossing point can change: 2 ranges change
• k largest zero-range points may change: 2k ranges change
• new point gets range, standard range of predecessor changes: 2 ranges change
• source (=root) gets a different of its two standard ranges

Algorithm is 2k + 5 stable
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A Stable Approximation Scheme (SAS) in R1

= standard-range points = root-crossing point = zero-range points

structure of optimal solution

Analysis of approximation ratio (on one side of root-crossing point)

range = 1

k largest zero-range points keep zero range
=⇒ other zero-range points have range < 1/k
=⇒ additional cost < k · (1/k)2 = 1/k

more precise analysis
approx ratio = 1 + 4/k



A Stable Approximation Scheme (SAS) in R1

• algorithm is (2k + 5)-stable
• aproximation ratio is 1 + 4/k

By picking a suitable k = O(1/ε) we get:

Theorem. The broadcast range-assignment problem in R1 admits a SAS with
stability parameter kε = O(1/ε), which is optimal.
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The structure of an optimal solution in S1

S1: 1-dimensional, circular space

Theorem. There is an optimal solution that can be obtained by cutting the
circle at an appropriate points, and then taking an optimal solution in R1.
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Theorem. There is no SAS for the broadcast range-assignment problem in S1.

δ = √
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for (1 + ε)-approximation
• p2n+1 cannot be reached

with counter-clockwise arc
• most points pi must have
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now point q arrives
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2
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2
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√ 3
/
2

new Opt

= 2( 1
2 (δ
√

3/2)2 + n(22 + 12)

= 8 3
4n

• most points pi must have
standard counterclockwise range

no SAS!
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No SAS in R2

Theorem. There is no SAS for the broadcast range-assignment problem in R2.



No SAS in R2

Theorem. There is no SAS for the broadcast range-assignment problem in R2.

=⇒

construction in S1 construction in R2

cutting corners does
not help (enough)
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Hardness: A Traditional Algorithmic View

np

p
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Assumption: p 6= np

• P = tractable
• np-hard = untractable

Algorithmic approach to problem solving

• Determine np-hardness by reduction from
known np-hard problem

• give approximation algorithm

or

• try to give fastest possible polynomial-time
algorithm

• sometimes lower bounds



A More Refined View

np

p

pspace

Algorithmic approach to problem solving

• Determine np-hardness by reduction from
known np-hard problem

• give approximation algorithm
• study parameterized complexity
• study subexponential algorithms

or

• try to give fastest possible polynomial-time
algorithm

• sometimes lower bounds

and relate problems to each other through
conditional lower bounds

Assumption: p 6= np

• P = tractable
• np-hard = untractable
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Subexponential algorithms

Subexponential algorithms: running time 2o(n)

• Typical examples: 2O(
√
n) or nO(

√
n) or 2O(n/ logn)

Do np-hard problems have subexponential algorithms?

• 3-SAT: Is given 3-CNF formula witn n variables satisfiable?

(x1 ∨ x2 ∨ x5) ∧ (x3 ∨ x4 ∨ x6) ∧ (x2 ∨ x3 ∨ x5)

Exponential-Time Hypothesis (ETH)
(Impagliazzo, Paturi and Zane 2001)

There is no sub-exponential algorithm for 3-SAT, that is,
3-SAT cannot be solved in 2o(n) time.

What about other np-hard problems?



Three classic np-hard graph problems

Input: graph G = (V,E) with n vertices

Independent Set
• Find largest set I ⊆ V such that no two vertices in
I are connected by an edge.

Vertex Cover
• Find smallest set C ⊆ V that contains at least one

endpoint of every edge in E.

Dominating Set
• Find smallest D ⊆ V such that for each v ∈ V

either v or one of its neighbors is in D.
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Three classic np-hard graph problems

Are there subexponential algorithms for these classic graph problems?

Theorem. Independent Set, Vertex Cover, and Dominating
Set cannot be solved in 2o(n) time, under ETH.

but we can get subexponential algorithms on planar graphs
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Planar graphs

Planar graphs: graphs that can be drawn without crossing edges

Planar Separator Theorem (Lipton,Tarjan 1979)

For any planar graph G = (V,E) there is a separator S ⊂ V of size O(
√
n)

such that V \ S can be partitioned into subsets A and B, each of size at
most 2

3n and with no edges between them.

Such a (2/3)-balanced separator can be computed in O(n) time.

A B

S
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Subexponential algorithms on planar graphs

Theorem. Independent Set can be solved in 2O(
√
n) time in planar

graphs.

T (n) = 2O(
√
n) + 2O(

√
n) · T (2n/3) =⇒ T (n) = 2O(

√
n)

Running time
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Extension to disk graphs?

Disk graph: intersection graph of set of disks:

• nodes = disks
• two nodes are connected iff the corresponding

disks intersect

Unit-disk graphs are a popular model for
ad-hoc wireless networks
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A Separator Theorem for disk graphs?

Disk graph: intersection graph of set of disks:

• nodes = disks
• two nodes are connected iff the corresponding

disks intersect

Can we get a balanced separator of size
O(
√
n) for disk graphs?

No

can have
arbitrarily large
cliques



A Separator Theorem for disk graphs

Theorem. [dB, Bodlaender, Kisfaludi-Bak, Marx, vd Zanden, STOC 2018]

Let GD be the intersection graph of a set D of n disks. Then there is an
α-balanced separator for GD, where α = 36/37, consisting of a collection
C1, C2, . . . , Cm of cliques such that

m∑
i=1

log(|Ci|+ 1) = O(
√
n)
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Subexponential algorithms on disk graphs

Theorem. Independent Set can be solved in 2O(
√
n) time in disk

graphs.

1. Compute (36/37)-balanced separator S of weighted clique size O(
√
n).

2. For each independent set IS ⊆ S (including empty set) do

same as before

Number of independent sets IS ⊆ S

Πm
i=1(|Ci|+ 1) = Πm

i=12log(|Ci|+1) = 2
∑m
i=1 log(|Ci|+1) = 2O(

√
n)

=⇒ running time is 2O(
√
n)
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Theorem. For unit-disk graphs we can also solve

• (Connected) Dominating Set
• (Connected) Vertex Cover
• (Connected) Feedback Vertex Set
• Hamiltonian Cycle

in 2O(
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Subexponential algorithms on unit-disk graphs

Theorem. For unit-disk graphs we can also solve

• (Connected) Dominating Set
• (Connected) Vertex Cover
• (Connected) Feedback Vertex Set
• Hamiltonian Cycle

in 2O(
√
n) time.

Approach

• use clique-based separator to get tree decomposition of small weight on
intersection graph induced by cliques

• use algorithms based on (weighted) tree decompositions

All results are optimal, assuming Exponential-Time Hypothesis.
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Theorem. (dB, Bodlaender, Kisfaludi-Bak, Marx, van der Zanden 2018)

Let GD be the intersection graph of a set D of n balls in Rd. Then there is
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Extension to higher dimensions

Theorem. (dB, Bodlaender, Kisfaludi-Bak, Marx, van der Zanden 2018)

Let GD be the intersection graph of a set D of n balls in Rd. Then there is
an α-balanced separator for GD, where α = 6d/(6d + 1), consisting of a
collection C1, C2, . . . , Cm of cliques such that

m∑
i=1

log(|Ci|+ 1) = O(n1−1/d)

Why n1−1/d?

• n1/d × · · · × n1/d spheres
• any balanced separator has

size Ω(n1−1/d)

From: chemistry.stackexchange.com



Theorem.

For ball graphs we can solve Independent Set in 2O(n1−1/d) time.

For unit-ball graphs we can also solve

• (Connected) Dominating Set
• (Connected) Vertex Cover
• (Connected) Feedback Vertex Set
• Hamiltonian Cycle

in 2O(n1−1/d) time.

Also works for (similarly-sized) fat objects.

Extension to higher dimensions



Theorem.

For ball graphs we can solve Independent Set in 2O(n1−1/d) time.

For unit-ball graphs we can also solve

• (Connected) Dominating Set
• (Connected) Vertex Cover
• (Connected) Feedback Vertex Set
• Hamiltonian Cycle

in 2O(n1−1/d) time.

Also works for (similarly-sized) fat objects.

Extension to higher dimensions

All these results are optimal, assuming ETH.



End of commercial break



Broadcast
Range

Assignment

Stable
Algorithms

Independent
Set

Stable Approximation Schemes for

Independent Set



joint work with Arpan Sadhukan and Frits Speiksma (in preparation)

The model

• vertex arrival model: vertex is inserted or deleted with all its incident edges
• edit distance: number of additions plus removals in independent set

solution before
arrival of vertex v

solution after
arrival of vertex v

edit distance = 3

v

Stable Algorithms for Independent Set
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No SAS for bounded-degree graphs

Claim. When kε = o(n) then independent set Ialg will always contain less than
cn/16 vertices from L ∪ S.

|L| = n |R| = n

S Consider first time |Ialg ∩ (L ∪ S)| > cn/16

|Ialg ∩ (L ∪ S)| 6 cn/16 + kε ≈ cn/16

Case (i): |Ialg ∩ L| > 7
12 · cn/16

Proof by contradition.

Then

|Ialg| = |Ialg ∩ (L ∪ S)|+ |Ialg ∩R|
6 cn/16 + (n− 1.99 · 7

12 · cn/16)
6 n− 1

12 · cn/16

Opt > n =⇒ approximation ratio not (1− ε)
for sufficiently small ε
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No SAS for bounded-degree graphs

Claim. When kε = o(n) then independent set Ialg will always contain less than
cn/16 vertices from L ∪ S.

|L| = n |R| = n

S Consider first time |Ialg ∩ (L ∪ S)| > cn/16

|Ialg ∩ (L ∪ S)| 6 cn/16 + kε ≈ cn/16

Case (ii): |Ialg ∩ L| < 7
12 · cn/16

Proof by contradition.

similar
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No SAS for bounded-degree graphs

Claim. When kε = o(n) then independent set Ialg will always contain less than
cn/16 vertices from L ∪ S.

at the end: Opt = 4
3 · n

and |Ialg| <
(
1 + c

16

)
n where 0 < c < 1

|L| = n |R| = n

S

Theorem. The class of bipartite graphs of
maximum degree 4 does not admit a SAS
for Independent Set.
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Theorem. There is a SAS for disk graphs (and other graphs with sublinear
clique-based separators) for Independent Set.

Consider graph class with clique-based separators of weight O(nδ), for δ < 1.

Algorithm

B Upon each insertion or deletion, do the following

1. if |Ialg| > (1− ε) ·Opt
2. then do nothing
3. else find Jout, Jin such that

4. replace Jout by Jin

• (Ialg \ Jout) ∪ Jin is independent set
• |Jin| > |Jout|
• |Jout|+ |Jin| = O((1/ε)

1
1−δ )



SAS for graphs with small clique-based separators

Theorem. There is a SAS for disk graphs (and other graphs with sublinear
clique-based separators) for Independent Set.

Consider graph class with clique-based separators of weight O(nδ), for δ < 1.

Algorithm

B Upon each insertion or deletion, do the following

1. if |Ialg| > (1− ε) ·Opt
2. then do nothing
3. else find Jout, Jin such that

4. replace Jout by Jin

• (Ialg \ Jout) ∪ Jin is independent set
• |Jin| > |Jout|
• |Jout|+ |Jin| = O((1/ε)

1
1−δ )

=⇒ will restore |Ialg| > (1− ε) ·Opt



SAS for graphs with small clique-based separators

Theorem. There is a SAS for disk graphs (and other graphs with sublinear
clique-based separators) for Independent Set.

Consider graph class with clique-based separators of weight O(nδ), for δ < 1.

Algorithm

B Upon each insertion or deletion, do the following

1. if |Ialg| > (1− ε) ·Opt
2. then do nothing
3. else find Jout, Jin such that

4. replace Jout by Jin

• (Ialg \ Jout) ∪ Jin is independent set
• |Jin| > |Jout|
• |Jout|+ |Jin| = O((1/ε)

1
1−δ )

=⇒ will restore |Ialg| > (1− ε) ·Opt

always possible?
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• (Ialg \ Jout) ∪ Jin is independent set
• |Jin| > |Jout|
• |Jout|+ |Jin| = O((1/ε)

1
1−δ )



SAS for graphs with small clique-based separators

Lemma. Let Ialg be an independent set such that |Ialg| < (1− ε) ·Opt.
Then there are Jout ⊆ Ialg and Jin such that

• (Ialg \ Jout) ∪ Jin is independent set
• |Jin| > |Jout|
• |Jout|+ |Jin| = O((1/ε)

1
1−δ )

• also basis for local-search PTAS
• proof using clique-based separators (similar to some existing proofs)



SAS for graphs with small clique-based separators

Proof sketch.

Ialg Iopt



1. take clique-based separator S

SAS for graphs with small clique-based separators

Proof sketch.

Ialg Iopt



1. take clique-based separator S

2. recurse on half A where ratio
|Iopt∩A|
|Ialg∩A| is largest

but add S ∩ Ialg

SAS for graphs with small clique-based separators

Proof sketch.

Ialg Iopt



1. take clique-based separator S

2. recurse on half A where ratio
|Iopt∩A|
|Ialg∩A| is largest

but add S ∩ Ialg

SAS for graphs with small clique-based separators

Proof sketch.

Ialg Iopt

until |Iopt|+ |Ialg| = Ω((1/ε)
1

1−δ )

we still have
|Iopt|
|Ialg| >

1
1−ε/2



SAS for graphs with small clique-based separators

Theorem. There is a SAS for disk graphs (and other graphs with sublinear
clique-based separators) for Independent Set.

Consider graph class with clique-based separators of weight O(nδ), for δ < 1.

Algorithm

B Upon each insertion or deletion, do the following

1. if |Ialg| > (1− ε) ·Opt
2. then do nothing
3. else find Jout, Jin such that

4. replace Jout by Jin

• (Ialg \ Jout) ∪ Jin is independent set
• |Jin| > |Jout|
• |Jout|+ |Jin| = O((1/ε)

1
1−δ )

=⇒ will restore |Ialg| > (1− ε) ·Opt

always possible!



Stable Approximation Schemes for Independent Set?

Is there a SAS for Independent Set on

• trees?

• graphs of maximum bounded degree?

• planar graphs?

• disk graphs?

YES

YES

YES

NO



Concluding remarks

What we have seen

• stable algorithms and Stable Approximation Schemes (SAS)
• SAS results and no-SAS results for the broadcast range-assignment problem
• SAS results and no-SAS results for Indepedendent Set
• advertisement for clique-based separators

What we have not seen

• algorithms with very small satbility parameter
(see our exisiting and upcoming paper)

What is open

• many things!



Thanks for your attention!
and to Arpan Sadhukan and Frits Spieksma


