Stable Approximation Schemes Mark de Berg (TU Eindhoven)

Talk Overview

IMACI

TU/e

Million Ist

VISIT OUR VANATHIRDE TIRUCHEN Stable Algorithms

Broadcast Range Assignment

Independent Set

Stable Approximation Schemes Basic Terminology and Relations to Existing Concepts

DARCO

TU/e

his me) sin

TINOUR VANATHINU

Stable Algorithms

Broadcast Range Assignment

Independent Set

Optimization problems

- compute optimal solution (minimum cost, or maximum profit)
- many optimization problems are NP-hard
 - ⇒ focus on approximation algorithms or parameterized algorithms or subexponential algorithms

INDEPENDENT SET

Optimization problems

- compute optimal solution (minimum cost, or maximum profit)
- many optimization problems are NP-hard
 - ⇒ focus on approximation algorithms or parameterized algorithms or subexponential algorithms

INDEPENDENT SET

What if

- cost is in "executing" the solution rather than computing it
- input is changing over time

We want to maintain a stable solution, which does not change much when input changes but is still close to optimal

Optimization problems

- compute optimal solution (minimum cost, or maximum profit)
- many optimization problems are NP-hard
 - ⇒ focus on approximation algorithms or parameterized algorithms or subexponential algorithms


```
INDEPENDENT SET
```

What if

- cost is in "executing" the solution rather than computing it
- input is changing over time

We want to maintain a stable solution, which does not change much when input changes but is still close to optimal

The framework

- define dynamic model
 - insertion-only, or fully dynamic, or deletion-only
 - define what an insertion/deletion means

The framework

- define dynamic model
 - insertion-only, or fully dynamic, or deletion-only
 - define what an insertion/deletion means

for graphs:

vertex-arrival model

edge-arrival model

The framework

- define dynamic model
 - insertion-only, or fully dynamic, or deletion-only
 - define what an insertion/deletion means

The framework

- define dynamic model
 - insertion-only, or fully dynamic, or deletion-only
 - define what an insertion/deletion means
- define "edit distance" between any two (not necessarily optimal) solutions

The framework

- define dynamic model
 - insertion-only, or fully dynamic, or deletion-only
 - define what an insertion/deletion means
- define "edit distance" between any two (not necessarily optimal) solutions

${\sf Example:} \ {\sf Independent} \ {\sf Set}$

edit distance := $|I_1 \Delta I_2|$

solution I_1 before arrival of vertex v

solution I_2 after arrival of vertex v

The framework

- define dynamic model
 - insertion-only, or fully dynamic, or deletion-only
 - define what an insertion/deletion means
- define "edit distance" between any two (not necessarily optimal) solutions

The framework

- define dynamic model
 - insertion-only, or fully dynamic, or deletion-only
 - define what an insertion/deletion means
- define "edit distance" between any two (not necessarily optimal) solutions

Definition. A *k*-stable α -approximation algorithm maintains a feasible solution such that

- the edit distance between the solutions before and after each update (insertion or deletion) is at most k
- the maintained solution is an $\alpha\text{-approximation}$ of an optimal solution at all times

Stable Approximation Schemes (SAS)

We would like a trade-off between stability and approximation ratio.

Definition. A stable approximation scheme (SAS) is an algorithm that, for any given parameter $\varepsilon > 0$,

- is k_{ε} -stable, where k_{ε} only depends on ε (not on the input size)
- gives a $(1+\varepsilon)\text{-approximation}$

Related concepts

- online algorithms, which process sequence σ of insertions
 - decisions are irrevocable
 - competitive ratio instead of approximation ratio

Related concepts

- $\bullet\,$ online algorithms, which process sequence $\sigma\,$ of insertions
 - decisions are irrevocable
 - competitive ratio instead of approximation ratio

 $A_{LG}(\sigma) =$ value of solution computed by online algorithm

 $\begin{aligned} \text{OPT}_{\text{offline}}(\sigma) = \text{value of solution computed by optimal offline algorithm} \\ & (\text{algorithm knows } \sigma \text{ in advance, but must still handle} \\ & \text{insertions in online manner}) \end{aligned}$

 $O_{PT}(\sigma) = value of optimal solution on final input (static optimum)$

Related concepts

- $\bullet\,$ online algorithms, which process sequence $\sigma\,$ of insertions
 - decisions are irrevocable
 - competitive ratio instead of approximation ratio

 $\operatorname{ALG}(\sigma)$ = value of solution computed by online algorithm

 $\begin{aligned} \text{OPT}_{\text{offline}}(\sigma) = \text{value of solution computed by optimal offline algorithm} \\ & (\text{algorithm knows } \sigma \text{ in advance, but must still handle} \\ & \text{insertions in online manner}) \end{aligned}$

 $O_{PT}(\sigma) =$ value of optimal solution on final input (static optimum)

competitive ratio
$$\approx \frac{ALG(\sigma)}{OPT_{offline}(\sigma)}$$

approximation ratio = $\frac{ALG(\sigma)}{OPT(\sigma)}$

Related concepts

- online algorithms, which process sequence σ of insertions
 - decisions are irrevocable
 - competitive ratio instead of approximation ratio

Related concepts

- $\bullet\,$ online algorithms, which process sequence $\sigma\,$ of insertions
 - decisions are irrevocable
 - competitive ratio instead of approximation ratio
- online algorithms with bounded recourse
 - recourse pprox stability
 - analysis often still uses competitive ratio (?)
- robust PTAS: similar to our SAS
- local-search PTAS

Related concepts

- online algorithms, which process sequence σ of insertions
 - decisions are irrevocable
 - competitive ratio instead of approximation ratio
- online algorithms with bounded recourse
 - recourse \approx stability
 - analysis often still uses competitive ratio (?)
- robust PTAS: similar to our SAS
- local-search PTAS

We typically do not care about computation time, and focus on trade-off between stability and approximation ratio.

Stable Approximation Schemes for Broadcast Range Assignment

maci

his me) sin

VINT OUR VANATHIRU

TU/e

Stable Algorithms Broadcast Range Assignment

Independent Set

P = {p₀,..., p_{n-1}}: set of n points in ℝ² (devices in wireless network)
range(p_i): transmission range of p_i

P = {p₀,..., p_{n-1}}: set of n points in ℝ² (devices in wireless network)
range(p_i): transmission range of p_i

 p_i can send information to p_j iff $|p_i p_j| \leq \operatorname{range}(p_i)$

P = {p₀,..., p_{n-1}}: set of n points in ℝ² (devices in wireless network)
range(p_i): transmission range of p_i

 p_i can send information to p_j iff $|p_i p_j| \leq \operatorname{range}(p_i)$

P = {p₀,..., p_{n-1}}: set of n points in ℝ² (devices in wireless network)
range(p_i): transmission range of p_i

 p_i can send information to p_j iff $|p_i p_j| \leq \operatorname{range}(p_i)$

P = {p₀,..., p_{n-1}}: set of n points in ℝ² (devices in wireless network)
range(p_i): transmission range of p_i

• range assignment induces communication graph

P = {p₀,..., p_{n-1}}: set of n points in ℝ² (devices in wireless network)
range(p_i): transmission range of p_i

- range assignment induces communication graph
- cost of range assignment = $\sum_{i} \operatorname{range}(p_i)^{\alpha}$

distance-power gradient practice: $1 \leqslant \alpha \leqslant 6$ from now on: $\alpha = 2$

P = {p₀,..., p_{n-1}}: set of n points in ℝ² (devices in wireless network)
range(p_i): transmission range of p_i

- range assignment induces communication graph
- cost of range assignment = $\sum_{i} \operatorname{range}(p_i)^{\alpha}$

range-assignment problem: assign ranges so that communication graph has certain properties, while minimizing cost

broadcast range-assignment problem: assign ranges so that communication graph has broadcast tree from given source p_0 , while minimizing cost

broadcast range-assignment problem: assign ranges so that communication graph has broadcast tree from given source p_0 , while minimizing cost

broadcast range-assignment problem: assign ranges so that communication graph has broadcast tree from given source p_0 , while minimizing cost

- polynomial-time solvable in \mathbb{R}^1 [Clementi *et al.*]
- NP-hard in \mathbb{R}^2 , O(1)-approximation [Clementi *et al.*, Fuchs, Wan *et al.*]
- APX-hard in \mathbb{R}^3 [Fuchs]

- source is fixed
- points arrive one by one (and may also be deleted)
- when point arrives it initially gets range zero
- edit distance = number of points whose range changes

- source is fixed
- points arrive one by one (and may also be deleted)
- when point arrives it initially gets range zero
- edit distance = number of points whose range changes

- source is fixed
- points arrive one by one (and may also be deleted)
- when point arrives it initially gets range zero
- edit distance = number of points whose range changes

- source is fixed
- points arrive one by one (and may also be deleted)
- when point arrives it initially gets range zero
- edit distance = number of points whose range changes

- source is fixed
- points arrive one by one (and may also be deleted)
- when point arrives it initially gets range zero
- edit distance = number of points whose range changes

- source is fixed
- points arrive one by one (and may also be deleted)
- when point arrives it initially gets range zero
- edit distance = number of points whose range changes

- source is fixed
- points arrive one by one (and may also be deleted)
- when point arrives it initially gets range zero
- edit distance = number of points whose range changes

- source is fixed
- points arrive one by one (and may also be deleted)
- when point arrives it initially gets range zero
- edit distance = number of points whose range changes

- source is fixed
- points arrive one by one (and may also be deleted)
- when point arrives it initially gets range zero
- edit distance = number of points whose range changes

- source is fixed
- points arrive one by one (and may also be deleted)
- when point arrives it initially gets range zero
- edit distance = number of points whose range changes

- source is fixed
- points arrive one by one (and may also be deleted)
- when point arrives it initially gets range zero
- edit distance = number of points whose range changes

online algorithm without recourse can have arbitrarily bad approximation ratio

- source is fixed
- points arrive one by one (and may also be deleted)
- when point arrives it initially gets range zero
- edit distance = number of points whose range changes

- source is fixed
- points arrive one by one (and may also be deleted)
- when point arrives it initially gets range zero
- edit distance = number of points whose range changes

online algorithm without recourse can have arbitrarily bad approximation ratio

- source is fixed
- points arrive one by one (and may also be deleted)
- when point arrives it initially gets range zero
- edit distance = number of points whose range changes

Stable algorithms for the dynamic broadcast range-assignment problem

Our results [dB-Sadhukhan-Spieksma, SWAT '22]

In \mathbb{R}^1

- there is a SAS with $k_{\varepsilon} = O(1/\varepsilon)$, which is optimal
- various algorithm with very small stability parameter
 - 1-stable $(6 + 2\sqrt{5})$ -approximation algorithm
 - 2-stable 2-approximation algorithm
 - 3-stable 1.97 approximation algorithm

$\ln\,\mathbb{S}^1$

- structure of optimal solution is essentially the same as in \mathbb{R}^1
- SAS does not exist

In \mathbb{R}^2

- SAS does not exist
- 17-stable 12-approximation algorithm

Stable algorithms for the dynamic broadcast range-assignment problem

Our results [dB-Sadhukhan-Spieksma, SWAT '22]

In \mathbb{R}^1

- there is a SAS with $k_{\varepsilon} = O(1/\varepsilon)$, which is optimal
- various algorithm with very small stability parameter
 - 1-stable $(6 + 2\sqrt{5})$ -approximation algorithm
 - 2-stable 2-approximation algorithm
 - 3-stable 1.97 approximation algorithm

$\ln\,\mathbb{S}^1$

- structure of optimal solution is essentially the same as in \mathbb{R}^1
- SAS does not exist

In \mathbb{R}^2

- SAS does not exist
- 17-stable 12-approximation algorithm

Theorem. There is always a broadcast tree with the following structure.

[Caragiannis-Kaklamanis-Kanellopoulos ISAAC 2002]

o = zero-range points

Note: there can be more edges in the communication graph.

insertion/deletion:

root-crossing point can change

 \implies many points can change from zero range to standard range (and vice versa)

insertion/deletion:

root-crossing point can change

 \implies many points can change from zero range to standard range (and vice versa)

SAS: maintain solution with following property

- give zero-range points in optimal solution a standard range instead
- ... except the k zero-range points with largest standard range

insertion/deletion:

root-crossing point can change

 \implies many points can change from zero range to standard range (and vice versa)

SAS: maintain solution with following property

- give zero-range points in optimal solution a standard range instead
- ... except the k zero-range points with largest standard range

Analysis of stability

Analysis of stability

- root-crossing point can change: 2 ranges change
- k largest zero-range points may change: 2k ranges change
- new point gets range, standard range of predecessor changes: 2 ranges change
- source (=root) gets a different of its two standard ranges

Analysis of stability

- root-crossing point can change: 2 ranges change
- k largest zero-range points may change: 2k ranges change
- new point gets range, standard range of predecessor changes: 2 ranges change
- source (=root) gets a different of its two standard ranges

Algorithm is 2k + 5 stable

Analysis of approximation ratio (on one side of root-crossing point)

Analysis of approximation ratio (on one side of root-crossing point)

Analysis of approximation ratio (on one side of root-crossing point)

k largest zero-range points keep zero range

- \implies other zero-range points have range < 1/k
- \implies additional cost $< k \cdot (1/k)^2 = 1/k$

Analysis of approximation ratio (on one side of root-crossing point)

k largest zero-range points keep zero range \implies other zero-range points have range < 1/k \implies additional cost $< k \cdot (1/k)^2 = 1/k$

more precise analysis approx ratio = 1 + 4/k

- algorithm is (2k+5)-stable
- approximation ratio is 1 + 4/k

By picking a suitable $k = O(1/\varepsilon)$ we get:

Theorem. The broadcast range-assignment problem in \mathbb{R}^1 admits a SAS with stability parameter $k_{\varepsilon} = O(1/\varepsilon)$, which is optimal.

Stable algorithms for the dynamic broadcast range-assignment problem

Our results [dB-Sadhukhan-Spieksma, SWAT '22]

In \mathbb{R}^1

- there is a SAS with $k_{\varepsilon} = O(1/\varepsilon)$, which is optimal
- various algorithm with very samll stability parameter
 - 1-stable $(6 + 2\sqrt{5})$ -approximation algorithm
 - 2-stable 2-approximation algorithm
 - 3-stable 1.97 approximation algorithm

$\ln\,\mathbb{S}^1$

- structure of optimal solution is essentially the same as in \mathbb{R}^1
- SAS does not exist

In \mathbb{R}^2

- SAS does not exist
- 17-stable 12-approximation algorithm

Stable algorithms for the dynamic broadcast range-assignment problem

Our results [dB-Sadhukhan-Spieksma, SWAT '22]

In \mathbb{R}^1

- there is a SAS with $k_{\varepsilon} = O(1/\varepsilon)$, which is optimal
- various algorithm with very samll stability parameter
 - 1-stable $(6 + 2\sqrt{5})$ -approximation algorithm
 - 2-stable 2-approximation algorithm
 - 3-stable 1.97 approximation algorithm

$\ln\,\mathbb{S}^1$

- structure of optimal solution is essentially the same as in \mathbb{R}^1
- -

SAS does not exist

In \mathbb{R}^2

- SAS does not exist
- 17-stable 12-approximation algorithm

The structure of an optimal solution in \mathbb{S}^1

 \mathbb{S}^1 : 1-dimensional, circular space

The structure of an optimal solution in \mathbb{S}^1

 \mathbb{S}^1 : 1-dimensional, circular space

Theorem. There is an optimal solution that can be obtained by cutting the circle at an appropriate points, and then taking an optimal solution in \mathbb{R}^1 .

$$OPT = \delta^2 + n(2^2 + 1^2) = 10n^2$$

Theorem. There is no SAS for the broadcast range-assignment problem in \mathbb{S}^1 .

$$OPT = \delta^2 + n(2^2 + 1^2) = 10n^2$$

for $(1 + \varepsilon)$ -approximation

- p_{2n+1} cannot be reached with counter-clockwise arc
- most points p_i must have standard clockwise range

Theorem. There is no SAS for the broadcast range-assignment problem in \mathbb{S}^1 .

 ${\rm Opt} = \delta^2 + n(2^2 + 1^2) = 10n^2$

for $(1 + \varepsilon)$ -approximation

- p_{2n+1} cannot be reached with counter-clockwise arc
- most points p_i must have standard clockwise range

now point q arrives

new Opt

- $= 2(\frac{1}{2}(\delta\sqrt{3/2})^2 + n(2^2 + 1^2))$ $= 8\frac{3}{4}n$
- most points p_i must have standard counterclockwise range

Stable algorithms for the dynamic broadcast range-assignment problem

Our results [dB-Sadhukhan-Spieksma, SWAT '22]

In \mathbb{R}^1

- there is a SAS with $k_{\varepsilon} = O(1/\varepsilon)$, which is optimal
- various algorithm with very samll stability parameter
 - 1-stable $(6 + 2\sqrt{5})$ -approximation algorithm
 - 2-stable 2-approximation algorithm
 - 3-stable 1.97 approximation algorithm

$\ln\,\mathbb{S}^1$

- structure of optimal solution is essentially the same as in \mathbb{R}^1
- -

SAS does not exist

In \mathbb{R}^2

- SAS does not exist
- 17-stable 12-approximation algorithm
Stable algorithms for the dynamic broadcast range-assignment problem

Our results [dB-Sadhukhan-Spieksma, SWAT '22]

In \mathbb{R}^1

- there is a SAS with $k_{\varepsilon} = O(1/\varepsilon)$, which is optimal
- various algorithm with very samll stability parameter
 - 1-stable $(6 + 2\sqrt{5})$ -approximation algorithm
 - 2-stable 2-approximation algorithm
 - 3-stable 1.97 approximation algorithm

$\ln\,\mathbb{S}^1$

- structure of optimal solution is essentially the same as in \mathbb{R}^1
- SAS does not exist

In \mathbb{R}^2

• SAS does not exist

No SAS in \mathbb{R}^2

Theorem. There is no SAS for the broadcast range-assignment problem in \mathbb{R}^2 .

No SAS in \mathbb{R}^2

Theorem. There is no SAS for the broadcast range-assignment problem in \mathbb{R}^2 .

cutting corners does not help (enough)

Commercial break

Hardness: A Traditional Algorithmic View

Assumption: $P \neq NP$

- P = tractable
- NP-hard = untractable

Algorithmic approach to problem solving

- Determine NP-hardness by reduction from known NP-hard problem
- give approximation algorithm

or

- try to give fastest possible polynomial-time algorithm
- sometimes lower bounds

A More Refined View

Assumption: $P \neq NP$

- P = tractable
- NP-hard = untractable

Algorithmic approach to problem solving

- Determine NP-hardness by reduction from known NP-hard problem
- give approximation algorithm
- study parameterized complexity
- study subexponential algorithms

or

- try to give fastest possible polynomial-time algorithm
- sometimes lower bounds

and relate problems to each other through conditional lower bounds

Subexponential algorithms

Subexponential algorithms: running time $2^{o(n)}$

• Typical examples: $2^{O(\sqrt{n})}$ or $n^{O(\sqrt{n})}$ or $2^{O(n/\log n)}$

Subexponential algorithms

Subexponential algorithms: running time $2^{o(n)}$

• Typical examples: $2^{O(\sqrt{n})}$ or $n^{O(\sqrt{n})}$ or $2^{O(n/\log n)}$

Do NP-hard problems have subexponential algorithms?

• 3-SAT: Is given 3-CNF formula with n variables satisfiable?

 $(x_1 \lor \overline{x_2} \lor x_5) \land (x_3 \lor x_4 \lor \overline{x_6}) \land (\overline{x_2} \lor x_3 \lor \overline{x_5})$

Subexponential algorithms

Subexponential algorithms: running time $2^{o(n)}$

• Typical examples: $2^{O(\sqrt{n})}$ or $n^{O(\sqrt{n})}$ or $2^{O(n/\log n)}$

Do NP-hard problems have subexponential algorithms?

• 3-SAT: Is given 3-CNF formula with n variables satisfiable?

 $(x_1 \lor \overline{x_2} \lor x_5) \land (x_3 \lor x_4 \lor \overline{x_6}) \land (\overline{x_2} \lor x_3 \lor \overline{x_5})$

Exponential-Time Hypothesis (ETH) (Impagliazzo, Paturi and Zane 2001)

There is no sub-exponential algorithm for 3-SAT, that is, 3-SAT cannot be solved in $2^{o(n)}$ time.

What about other NP-hard problems?

Input: graph G = (V, E) with n vertices

INDEPENDENT SET

 Find largest set I ⊆ V such that no two vertices in I are connected by an edge.

VERTEX COVER

• Find smallest set $C \subseteq V$ that contains at least one endpoint of every edge in E.

Dominating Set

Input: graph G = (V, E) with n vertices

INDEPENDENT SET

• Find largest set $I \subseteq V$ such that no two vertices in I are connected by an edge.

VERTEX COVER

• Find smallest set $C \subseteq V$ that contains at least one endpoint of every edge in E.

Dominating Set

Input: graph G = (V, E) with n vertices

INDEPENDENT SET

• Find largest set $I \subseteq V$ such that no two vertices in I are connected by an edge.

VERTEX COVER

• Find smallest set $C \subseteq V$ that contains at least one endpoint of every edge in E.

Dominating Set

Input: graph G = (V, E) with n vertices

INDEPENDENT SET

• Find largest set $I \subseteq V$ such that no two vertices in I are connected by an edge.

VERTEX COVER

• Find smallest set $C \subseteq V$ that contains at least one endpoint of every edge in E.

Dominating Set

Input: graph G = (V, E) with n vertices

INDEPENDENT SET

• Find largest set $I \subseteq V$ such that no two vertices in I are connected by an edge.

VERTEX COVER

• Find smallest set $C \subseteq V$ that contains at least one endpoint of every edge in E.

Dominating Set

Are there subexponential algorithms for these classic graph problems?

Are there subexponential algorithms for these classic graph problems?

Theorem. INDEPENDENT SET, VERTEX COVER, and DOMINATING SET cannot be solved in $2^{o(n)}$ time, under ETH.

Are there subexponential algorithms for these classic graph problems?

Theorem. INDEPENDENT SET, VERTEX COVER, and DOMINATING SET cannot be solved in $2^{o(n)}$ time, under ETH.

but we can get subexponential algorithms on planar graphs

Planar graphs: graphs that can be drawn without crossing edges

Planar graphs: graphs that can be drawn without crossing edges

Planar Separator Theorem (Lipton, Tarjan 1979)

Planar graphs: graphs that can be drawn without crossing edges

Planar Separator Theorem (Lipton, Tarjan 1979)

For any planar graph G = (V, E) there is a separator $S \subset V$ of size $O(\sqrt{n})$ such that $V \setminus S$ can be partitioned into subsets A and B, each of size at most $\frac{2}{3}n$ and with no edges between them.

Planar graphs: graphs that can be drawn without crossing edges

Planar Separator Theorem (Lipton, Tarjan 1979)

For any planar graph G = (V, E) there is a separator $S \subset V$ of size $O(\sqrt{n})$ such that $V \setminus S$ can be partitioned into subsets A and B, each of size at most $\frac{2}{3}n$ and with no edges between them.

Planar graphs: graphs that can be drawn without crossing edges

Planar Separator Theorem (Lipton, Tarjan 1979)

For any planar graph G = (V, E) there is a separator $S \subset V$ of size $O(\sqrt{n})$ such that $V \setminus S$ can be partitioned into subsets A and B, each of size at most $\frac{2}{3}n$ and with no edges between them.

Such a (2/3)-balanced separator can be computed in O(n) time.

- 1. Compute (2/3)-balanced separator S of size $O(\sqrt{n})$.
- 2. For each independent set $I_S \subseteq S$ (including empty set) do
 - (a) Recursively find max independent set I_A for $A \setminus \{$ neighbors of $I_S \}$
 - (b) Recursively find max independent set I_B for B \ {neighbors of I_S}
 (c) I(S) := I_S ∪ I_A ∪ I_B
- 3. Return the largest of the sets I(S) found in Step 2.

- 1. Compute (2/3)-balanced separator S of size $O(\sqrt{n})$.
- 2. For each independent set $I_S \subseteq S$ (including empty set) do
 - (a) Recursively find max independent set I_A for $A \setminus \{$ neighbors of $I_S \}$
 - (b) Recursively find max independent set I_B for B \ {neighbors of I_S}
 (c) I(S) := I_S ∪ I_A ∪ I_B
- 3. Return the largest of the sets I(S) found in Step 2.

- 1. Compute (2/3)-balanced separator S of size $O(\sqrt{n})$.
- 2. For each independent set $I_S \subseteq S$ (including empty set) do
 - (a) Recursively find max independent set I_A for $A \setminus \{$ neighbors of $I_S \}$
 - (b) Recursively find max independent set I_B for B \ {neighbors of I_S}
 (c) I(S) := I_S ∪ I_A ∪ I_B
- 3. Return the largest of the sets I(S) found in Step 2.

- 1. Compute (2/3)-balanced separator S of size $O(\sqrt{n})$.
- 2. For each independent set $I_S \subseteq S$ (including empty set) do
 - (a) Recursively find max independent set I_A for $A \setminus \{$ neighbors of $I_S \}$
 - (b) Recursively find max independent set I_B for B \ {neighbors of I_S}
 (c) I(S) := I_S ∪ I_A ∪ I_B
- 3. Return the largest of the sets I(S) found in Step 2.

- 1. Compute (2/3)-balanced separator S of size $O(\sqrt{n})$.
- 2. For each independent set $I_S \subseteq S$ (including empty set) do
 - (a) Recursively find max independent set I_A for $A \setminus \{$ neighbors of $I_S \}$
 - (b) Recursively find max independent set I_B for B \ {neighbors of I_S}
 (c) I(S) := I_S ∪ I_A ∪ I_B
- 3. Return the largest of the sets I(S) found in Step 2.

- 1. Compute (2/3)-balanced separator S of size $O(\sqrt{n})$.
- 2. For each independent set $I_S \subseteq S$ (including empty set) do
 - (a) Recursively find max independent set I_A for $A \setminus \{\text{neighbors of } I_S\}$
 - (b) Recursively find max independent set I_B for B \ {neighbors of I_S}
 (c) I(S) := I_S ∪ I_A ∪ I_B
- 3. Return the largest of the sets I(S) found in Step 2.

- 1. Compute (2/3)-balanced separator S of size $O(\sqrt{n})$.
- 2. For each independent set $I_S \subseteq S$ (including empty set) do
 - (a) Recursively find max independent set I_A for $A \setminus \{\text{neighbors of } I_S\}$
 - (b) Recursively find max independent set I_B for B \ {neighbors of I_S}
 (c) I(S) := I_S ∪ I_A ∪ I_B
- 3. Return the largest of the sets I(S) found in Step 2.

- 1. Compute (2/3)-balanced separator S of size $O(\sqrt{n})$.
- 2. For each independent set $I_S \subseteq S$ (including empty set) do
 - (a) Recursively find max independent set I_A for $A \setminus \{\text{neighbors of } I_S\}$
 - (b) Recursively find max independent set I_B for B \ {neighbors of I_S}
 (c) I(S) := I_S ∪ I_A ∪ I_B
- 3. Return the largest of the sets I(S) found in Step 2.

- 1. Compute (2/3)-balanced separator S of size $O(\sqrt{n})$.
- 2. For each independent set $I_S \subseteq S$ (including empty set) do
 - (a) Recursively find max independent set I_A for $A \setminus \{$ neighbors of $I_S \}$
 - (b) Recursively find max independent set I_B for B \ {neighbors of I_S}
 (c) I(S) := I_S ∪ I_A ∪ I_B
- 3. Return the largest of the sets I(S) found in Step 2.

- 1. Compute (2/3)-balanced separator S of size $O(\sqrt{n})$.
- 2. For each independent set $I_S \subseteq S$ (including empty set) do
 - (a) Recursively find max independent set I_A for $A \setminus \{$ neighbors of $I_S \}$
 - (b) Recursively find max independent set I_B for B \ {neighbors of I_S}
 (c) I(S) := I_S ∪ I_A ∪ I_B
- 3. Return the largest of the sets I(S) found in Step 2.

- 1. Compute (2/3)-balanced separator S of size $O(\sqrt{n})$.
- 2. For each independent set $I_S \subseteq S$ (including empty set) do
 - (a) Recursively find max independent set I_A for $A \setminus \{$ neighbors of $I_S \}$
 - (b) Recursively find max independent set I_B for B \ {neighbors of I_S}
 (c) I(S) := I_S ∪ I_A ∪ I_B
- 3. Return the largest of the sets I(S) found in Step 2.

Theorem. INDEPENDENT SET can be solved in $2^{O(\sqrt{n})}$ time in planar graphs.

Running time

Theorem. INDEPENDENT SET can be solved in $2^{O(\sqrt{n})}$ time in planar graphs.

Running time

$$T(n) = 2^{O(\sqrt{n})} + 2^{O(\sqrt{n})} \cdot T(2n/3) \qquad \Longrightarrow \qquad T(n) = 2^{O(\sqrt{n})}$$
Extension to disk graphs?

Disk graph: intersection graph of set of disks:

- nodes = disks
- two nodes are connected iff the corresponding disks intersect

Extension to disk graphs?

Disk graph: intersection graph of set of disks:

- nodes = disks
- two nodes are connected iff the corresponding disks intersect

Unit-disk graphs are a popular model for ad-hoc wireless networks

A Separator Theorem for disk graphs?

Disk graph: intersection graph of set of disks:

- nodes = disks
- two nodes are connected iff the corresponding disks intersect

A Separator Theorem for disk graphs?

Disk graph: intersection graph of set of disks:

- nodes = disks
- two nodes are connected iff the corresponding disks intersect

Can we get a balanced separator of size $O(\sqrt{n})$ for disk graphs?

A Separator Theorem for disk graphs?

Disk graph: intersection graph of set of disks:

- nodes = disks
- two nodes are connected iff the corresponding disks intersect

Can we get a balanced separator of size $O(\sqrt{n})$ for disk graphs?

No

can have arbitrarily large cliques

A Separator Theorem for disk graphs

Theorem. [dB, Bodlaender, Kisfaludi-Bak, Marx, vd Zanden, STOC 2018]

Let \mathcal{G}_D be the intersection graph of a set D of n disks. Then there is an α -balanced separator for \mathcal{G}_D , where $\alpha = 36/37$, consisting of a collection C_1, C_2, \ldots, C_m of cliques such that

$$\sum_{i=1}^{m} \log(|C_i| + 1) = O(\sqrt{n})$$

Theorem. INDEPENDENT SET can be solved in $2^{O(\sqrt{n})}$ time in disk graphs.

Theorem. INDEPENDENT SET can be solved in $2^{O(\sqrt{n})}$ time in disk graphs.

- 1. Compute (36/37)-balanced separator S of weighted clique size $O(\sqrt{n})$.
- 2. For each independent set $I_S \subseteq S$ (including empty set) do

same as before

Theorem. INDEPENDENT SET can be solved in $2^{O(\sqrt{n})}$ time in disk graphs.

- 1. Compute (36/37)-balanced separator S of weighted clique size $O(\sqrt{n})$.
- 2. For each independent set $I_S \subseteq S$ (including empty set) do

same as before

Number of independent sets $I_S \subseteq S$

Theorem. INDEPENDENT SET can be solved in $2^{O(\sqrt{n})}$ time in disk graphs.

- 1. Compute (36/37)-balanced separator S of weighted clique size $O(\sqrt{n})$.
- 2. For each independent set $I_S \subseteq S$ (including empty set) do

same as before

Number of independent sets $I_S \subseteq S$

 $\Pi_{i=1}^{m}(|C_{i}|+1) = \Pi_{i=1}^{m} 2^{\log(|C_{i}|+1)} = 2^{\sum_{i=1}^{m} \log(|C_{i}|+1)} = 2^{O(\sqrt{n})}$

Theorem. INDEPENDENT SET can be solved in $2^{O(\sqrt{n})}$ time in disk graphs.

- 1. Compute (36/37)-balanced separator S of weighted clique size $O(\sqrt{n})$.
- 2. For each independent set $I_S \subseteq S$ (including empty set) do

same as before

Number of independent sets $I_S \subseteq S$

 $\Pi_{i=1}^{m}(|C_{i}|+1) = \Pi_{i=1}^{m} 2^{\log(|C_{i}|+1)} = 2^{\sum_{i=1}^{m} \log(|C_{i}|+1)} = 2^{O(\sqrt{n})}$

 \implies running time is $2^{O(\sqrt{n})}$

Theorem. For unit-disk graphs we can also solve

- (Connected) Dominating Set
- (Connected) Vertex Cover
- (Connected) Feedback Vertex Set
- HAMILTONIAN CYCLE

in $2^{O(\sqrt{n})}$ time.

Theorem. For unit-disk graphs we can also solve

- (Connected) Dominating Set
- (Connected) Vertex Cover
- (Connected) Feedback Vertex Set
- HAMILTONIAN CYCLE

in $2^{O(\sqrt{n})}$ time.

Approach

- use clique-based separator to get tree decomposition of small weight on intersection graph induced by cliques
- use algorithms based on (weighted) tree decompositions

All results are optimal, assuming Exponential-Time Hypothesis.

Theorem. (dB, Bodlaender, Kisfaludi-Bak, Marx, van der Zanden 2018)

Let \mathcal{G}_D be the intersection graph of a set D of n balls in \mathbb{R}^d . Then there is an α -balanced separator for \mathcal{G}_D , where $\alpha = 6^d/(6^d + 1)$, consisting of a collection C_1, C_2, \ldots, C_m of cliques such that

$$\sum_{i=1}^{m} \log(|C_i| + 1) = O(n^{1-1/d})$$

Theorem. (dB, Bodlaender, Kisfaludi-Bak, Marx, van der Zanden 2018)

Let \mathcal{G}_D be the intersection graph of a set D of n balls in \mathbb{R}^d . Then there is an α -balanced separator for \mathcal{G}_D , where $\alpha = 6^d/(6^d + 1)$, consisting of a collection C_1, C_2, \ldots, C_m of cliques such that

$$\sum_{i=1}^{m} \log(|C_i| + 1) = O(n^{1-1/d})$$

Why $n^{1-1/d}$?

Theorem. (dB, Bodlaender, Kisfaludi-Bak, Marx, van der Zanden 2018)

Let \mathcal{G}_D be the intersection graph of a set D of n balls in \mathbb{R}^d . Then there is an α -balanced separator for \mathcal{G}_D , where $\alpha = 6^d/(6^d + 1)$, consisting of a collection C_1, C_2, \ldots, C_m of cliques such that

$$\sum_{i=1}^{m} \log(|C_i| + 1) = O(n^{1-1/d})$$

Why
$$n^{1-1/d}$$
?

From: chemistry.stackexchange.com

• any balanced separator has size
$$\Omega(n^{1-1/d})$$

Theorem.

For ball graphs we can solve INDEPENDENT SET in $2^{O(n^{1-1/d})}$ time.

For unit-ball graphs we can also solve

- (Connected) Dominating Set
- (Connected) Vertex Cover
- (Connected) Feedback Vertex Set
- HAMILTONIAN CYCLE

in $2^{O(n^{1-1/d})}$ time.

Also works for (similarly-sized) fat objects.

Theorem.

For ball graphs we can solve INDEPENDENT SET in $2^{O(n^{1-1/d})}$ time.

For unit-ball graphs we can also solve

- (Connected) Dominating Set
- (Connected) Vertex Cover
- (Connected) Feedback Vertex Set
- HAMILTONIAN CYCLE

in $2^{O(n^{1-1/d})}$ time.

Also works for (similarly-sized) fat objects.

All these results are optimal, assuming ETH.

End of commercial break

Stable Approximation Schemes for Independent Set

maci

Million Sink

VISIT OUR VANATHIRU

TU/e

Stable Algorithms Broadcast Range Assignment

Independent Set

Stable Algorithms for Independent Set

joint work with Arpan Sadhukan and Frits Speiksma (in preparation)

The model

- vertex arrival model: vertex is inserted or deleted with all its incident edges
- edit distance: number of additions plus removals in independent set

Stable Approximation Schemes for Independent Set?

Is there a SAS for $\operatorname{INDEPENDENT}\,\operatorname{Set}\,$ on

• trees?

- graphs of maximum bounded degree?
- planar graphs?

• disk graphs?

Stable Approximation Schemes for Independent Set?

Is there a SAS for $\operatorname{INDEPENDENT}\,\operatorname{Set}\,$ on

• trees?

YES

- graphs of maximum bounded degree? NO
- planar graphs?

YES

• disk graphs?

YES

Stable Approximation Schemes for Independent Set?

Is there a SAS for $\ensuremath{\operatorname{INDEPENDENT}}$ Set on

• trees? YES • graphs of maximum bounded degree? NO • planar graphs? YES • disk graphs? YES

Theorem. The class of bipartite graphs of maximum degree 4 does not admit a SAS for INDEPENDENT SET.

Theorem. The class of bipartite graphs of maximum degree 4 does not admit a SAS for INDEPENDENT SET.

Proof. There is an $\varepsilon > 0$ such that $(1 - \varepsilon)$ -approximation requires $k_{\varepsilon} = \Omega(n)$

Theorem. The class of bipartite graphs of maximum degree 4 does not admit a SAS for INDEPENDENT SET.

Proof. There is an $\varepsilon > 0$ such that $(1 - \varepsilon)$ -approximation requires $k_{\varepsilon} = \Omega(n)$

3-regular bipartite expander with 2n vertices

- every node has degree 3
- $\bullet \ |N[S]| \geqslant 1.99 |S| \ \ \text{for all} \ S \subset V \ \text{of size at} \\ \text{most} \ cn \ \text{for some} \ c > 0 \\ \label{eq:sigma_s$

Theorem. The class of bipartite graphs of maximum degree 4 does not admit a SAS for INDEPENDENT SET.

Proof. There is an $\varepsilon > 0$ such that $(1 - \varepsilon)$ -approximation requires $k_{\varepsilon} = \Omega(n)$

3-regular bipartite expander with 2n vertices

- every node has degree 3
- $\bullet \ |N[S]| \geqslant 1.99 |S| \ \ \text{for all} \ S \subset V \ \text{of size at} \\ \text{most} \ cn \ \text{for some} \ c > 0 \\ \label{eq:sigma_s$

Theorem. The class of bipartite graphs of maximum degree 4 does not admit a SAS for INDEPENDENT SET.

Proof. There is an $\varepsilon > 0$ such that $(1 - \varepsilon)$ -approximation requires $k_{\varepsilon} = \Omega(n)$

$$|L| = n \quad |R| = n$$

Theorem. The class of bipartite graphs of maximum degree 4 does not admit a SAS for INDEPENDENT SET.

Proof. There is an $\varepsilon > 0$ such that $(1 - \varepsilon)$ -approximation requires $k_{\varepsilon} = \Omega(n)$

• first R arrives

Theorem. The class of bipartite graphs of maximum degree 4 does not admit a SAS for INDEPENDENT SET.

Proof. There is an $\varepsilon > 0$ such that $(1 - \varepsilon)$ -approximation requires $k_{\varepsilon} = \Omega(n)$

• then L arrives

Theorem. The class of bipartite graphs of maximum degree 4 does not admit a SAS for INDEPENDENT SET.

Proof. There is an $\varepsilon > 0$ such that $(1 - \varepsilon)$ -approximation requires $k_{\varepsilon} = \Omega(n)$

- first R arrives
- then L arrives

Theorem. The class of bipartite graphs of maximum degree 4 does not admit a SAS for INDEPENDENT SET.

Proof. There is an $\varepsilon > 0$ such that $(1 - \varepsilon)$ -approximation requires $k_{\varepsilon} = \Omega(n)$

- first R arrives
- then L arrives

Theorem. The class of bipartite graphs of maximum degree 4 does not admit a SAS for INDEPENDENT SET.

Proof. There is an $\varepsilon > 0$ such that $(1 - \varepsilon)$ -approximation requires $k_{\varepsilon} = \Omega(n)$

• first
$$R$$
 arrives

• then L arrives

Theorem. The class of bipartite graphs of maximum degree 4 does not admit a SAS for INDEPENDENT SET.

Proof. There is an $\varepsilon > 0$ such that $(1 - \varepsilon)$ -approximation requires $k_{\varepsilon} = \Omega(n)$

$$|L| = n \quad |R| = n$$

- first R arrives
- then L arrives
- then n/3 degree-3 vertices arrive, connecting to distinct vertices in R

Theorem. The class of bipartite graphs of maximum degree 4 does not admit a SAS for INDEPENDENT SET.

Proof. There is an $\varepsilon > 0$ such that $(1 - \varepsilon)$ -approximation requires $k_{\varepsilon} = \Omega(n)$

- first R arrives
- then L arrives
- then n/3 degree-3 vertices arrive, connecting to distinct vertices in R
Theorem. The class of bipartite graphs of maximum degree 4 does not admit a SAS for INDEPENDENT SET.

Proof. There is an $\varepsilon > 0$ such that $(1 - \varepsilon)$ -approximation requires $k_{\varepsilon} = \Omega(n)$

$$|L| = n \quad |R| = n$$

- first R arrives
 - then L arrives
 - then n/3 degree-3 vertices arrive, connecting to distinct vertices in R

Theorem. The class of bipartite graphs of maximum degree 4 does not admit a SAS for INDEPENDENT SET.

Proof. There is an $\varepsilon > 0$ such that $(1 - \varepsilon)$ -approximation requires $k_{\varepsilon} = \Omega(n)$

$$|L| = n \quad |R| = n$$

- first R arrives
 - then L arrives
 - then n/3 degree-3 vertices arrive, connecting to distinct vertices in R

Claim. When $k_{\varepsilon} = o(n)$ then independent set I_{alg} will always contain less than cn/16 vertices from $L \cup S$.

Claim. When $k_{\varepsilon} = o(n)$ then independent set I_{alg} will always contain less than cn/16 vertices from $L \cup S$.

Claim. When $k_{\varepsilon} = o(n)$ then independent set I_{alg} will always contain less than cn/16 vertices from $L \cup S$.

Proof by contradition.

Consider first time $|I_{alg} \cap (L \cup S)| \ge cn/16$

Claim. When $k_{\varepsilon} = o(n)$ then independent set I_{alg} will always contain less than cn/16 vertices from $L \cup S$.

Proof by contradition.

Consider first time $|I_{alg} \cap (L \cup S)| \ge cn/16$

 $|I_{\text{alg}} \cap (L \cup S)| \leqslant cn/16 + k_{\varepsilon} \approx cn/16$

Claim. When $k_{\varepsilon} = o(n)$ then independent set I_{alg} will always contain less than cn/16 vertices from $L \cup S$.

Proof by contradition.

Consider first time $|I_{alg} \cap (L \cup S)| \ge cn/16$ $|I_{alg} \cap (L \cup S)| \le cn/16 + k_{\varepsilon} \approx cn/16$ Case (i): $|I_{alg} \cap L| \ge \frac{7}{12} \cdot cn/16$

Claim. When $k_{\varepsilon} = o(n)$ then independent set I_{alg} will always contain less than cn/16 vertices from $L \cup S$.

Proof by contradition.

Consider first time $|I_{alg} \cap (L \cup S)| \ge cn/16$ $|I_{alg} \cap (L \cup S)| \le cn/16 + k_{\varepsilon} \approx cn/16$ Case (i): $|I_{alg} \cap L| \ge \frac{7}{12} \cdot cn/16$ Then

$$\begin{aligned} |I_{\text{alg}}| &= |I_{\text{alg}} \cap (L \cup S)| + |I_{\text{alg}} \cap R| \\ &\leqslant cn/16 + (n-1.99 \cdot \frac{7}{12} \cdot cn/16) \\ &\leqslant n - \frac{1}{12} \cdot cn/16 \end{aligned}$$

Claim. When $k_{\varepsilon} = o(n)$ then independent set I_{alg} will always contain less than cn/16 vertices from $L \cup S$.

Proof by contradition.

Consider first time $|I_{alg} \cap (L \cup S)| \ge cn/16$ $|I_{alg} \cap (L \cup S)| \le cn/16 + k_{\varepsilon} \approx cn/16$ Case (i): $|I_{alg} \cap L| \ge \frac{7}{12} \cdot cn/16$

Then

$$|I_{\text{alg}}| = |I_{\text{alg}} \cap (L \cup S)| + |I_{\text{alg}} \cap R|$$

$$\leqslant cn/16 + (n - 1.99 \cdot \frac{7}{12} \cdot cn/16)$$

$$\leqslant n - \frac{1}{12} \cdot cn/16$$

 $\begin{array}{l} \mathrm{OPT} \geqslant n \Longrightarrow \text{approximation ratio not } (1-\varepsilon) \\ & \text{for sufficiently small } \varepsilon \end{array}$

Claim. When $k_{\varepsilon} = o(n)$ then independent set I_{alg} will always contain less than cn/16 vertices from $L \cup S$.

Proof by contradition.

Consider first time $|I_{alg} \cap (L \cup S)| \ge cn/16$ $|I_{alg} \cap (L \cup S)| \le cn/16 + k_{\varepsilon} \approx cn/16$ Case (ii): $|I_{alg} \cap L| < \frac{7}{12} \cdot cn/16$

Claim. When $k_{\varepsilon} = o(n)$ then independent set I_{alg} will always contain less than cn/16 vertices from $L \cup S$.

Proof by contradition.

Consider first time $|I_{alg} \cap (L \cup S)| \ge cn/16$ $|I_{alg} \cap (L \cup S)| \le cn/16 + k_{\varepsilon} \approx cn/16$ Case (ii): $|I_{alg} \cap L| < \frac{7}{12} \cdot cn/16$

similar

Claim. When $k_{\varepsilon} = o(n)$ then independent set I_{alg} will always contain less than cn/16 vertices from $L \cup S$.

 $|L| = n \quad |R| = n$

Claim. When $k_{\varepsilon} = o(n)$ then independent set I_{alg} will always contain less than cn/16 vertices from $L \cup S$.

at the end: $OPT = \frac{4}{3} \cdot n$

and $|I_{alg}| < (1 + \frac{c}{16}) n$ where 0 < c < 1

Claim. When $k_{\varepsilon} = o(n)$ then independent set I_{alg} will always contain less than cn/16 vertices from $L \cup S$.

at the end: $OPT = \frac{4}{3} \cdot n$

and $|I_{\text{alg}}| < \left(1 + \frac{c}{16}\right)n$ where 0 < c < 1

Theorem. The class of bipartite graphs of maximum degree 4 does not admit a SAS for INDEPENDENT SET.

Stable Approximation Schemes for Independent Set?

Is there a SAS for $\ensuremath{\operatorname{INDEPENDENT}}$ Set on

• trees? YES • graphs of maximum bounded degree? NO • planar graphs? YES • disk graphs? YES

Stable Approximation Schemes for Independent Set?

Is there a SAS for $\ensuremath{\operatorname{INDEPENDENT}}$ Set on

• trees?

- graphs of maximum bounded degree? **NO**
- planar graphs?

YES

• disk graphs?

Theorem. There is a SAS for disk graphs (and other graphs with sublinear clique-based separators) for INDEPENDENT SET.

Theorem. There is a SAS for disk graphs (and other graphs with sublinear clique-based separators) for INDEPENDENT SET.

Consider graph class with clique-based separators of weight $O(n^{\delta})$, for $\delta < 1$.

Algorithm

4.

- \triangleright Upon each insertion or deletion, do the following
- 1. if $|I_{\text{alg}}| \ge (1 \varepsilon) \cdot \text{Opt}$
- 2. then do nothing
- 3. else find J_{out}, J_{in} such that
 - $(I_{\text{alg}} \setminus J_{\text{out}}) \cup J_{\text{in}}$ is independent set
 - $|J_{\rm in}| > |J_{\rm out}|$
 - $|J_{\text{out}}| + |J_{\text{in}}| = O((1/\varepsilon)^{\frac{1}{1-\delta}})$
 - replace $J_{
 m out}$ by $J_{
 m in}$

Theorem. There is a SAS for disk graphs (and other graphs with sublinear clique-based separators) for INDEPENDENT SET.

Consider graph class with clique-based separators of weight $O(n^{\delta})$, for $\delta < 1$.

Algorithm

4.

- \triangleright Upon each insertion or deletion, do the following
- 1. if $|I_{\text{alg}}| \ge (1 \varepsilon) \cdot \text{Opt}$
- 2. then do nothing
- 3. else find J_{out}, J_{in} such that
 - $(I_{\mathrm{alg}} \setminus J_{\mathrm{out}}) \cup J_{\mathrm{in}}$ is independent set
 - $|J_{\rm in}| > |J_{\rm out}|$
 - $|J_{\text{out}}| + |J_{\text{in}}| = O((1/\varepsilon)^{\frac{1}{1-\delta}})$

replace J_{out} by $J_{\text{in}} \implies$ will restore $|I_{\text{alg}}| \ge (1 - \varepsilon) \cdot \text{Opt}$

Theorem. There is a SAS for disk graphs (and other graphs with sublinear clique-based separators) for INDEPENDENT SET.

Consider graph class with clique-based separators of weight $O(n^{\delta})$, for $\delta < 1$.

Algorithm

4.

- \triangleright Upon each insertion or deletion, do the following
- 1. if $|I_{\text{alg}}| \ge (1 \varepsilon) \cdot \text{Opt}$
- 2. then do nothing
- 3. else find J_{out}, J_{in} such that
 - $(I_{\mathrm{alg}} \setminus J_{\mathrm{out}}) \cup J_{\mathrm{in}}$ is independent set
 - $|J_{\rm in}| > |J_{\rm out}|$

always possible?

• $|J_{\text{out}}| + |J_{\text{in}}| = O((1/\varepsilon)^{\frac{1}{1-\delta}})$

replace J_{out} by $J_{\text{in}} \implies$ will restore $|I_{\text{alg}}| \ge (1 - \varepsilon) \cdot \text{Opt}$

Lemma. Let I_{alg} be an independent set such that $|I_{\text{alg}}| < (1 - \varepsilon) \cdot \text{Opt.}$ Then there are $J_{\text{out}} \subseteq I_{\text{alg}}$ and J_{in} such that

- $(I_{\mathrm{alg}} \setminus J_{\mathrm{out}}) \cup J_{\mathrm{in}}$ is independent set
- $|J_{\rm in}| > |J_{\rm out}|$
- $|J_{\text{out}}| + |J_{\text{in}}| = O((1/\varepsilon)^{\frac{1}{1-\delta}})$

Lemma. Let I_{alg} be an independent set such that $|I_{\text{alg}}| < (1 - \varepsilon) \cdot \text{Opt.}$ Then there are $J_{\text{out}} \subseteq I_{\text{alg}}$ and J_{in} such that

- $(I_{\mathrm{alg}} \setminus J_{\mathrm{out}}) \cup J_{\mathrm{in}}$ is independent set
- $|J_{\rm in}| > |J_{\rm out}|$
- $|J_{\text{out}}| + |J_{\text{in}}| = O((1/\varepsilon)^{\frac{1}{1-\delta}})$
- also basis for local-search PTAS
- proof using clique-based separators (similar to some existing proofs)

Proof sketch.

Proof sketch.

1. take clique-based separator S

Proof sketch.

- 1. take clique-based separator S
- 2. recurse on half A where ratio $\frac{|I_{opt} \cap A|}{|I_{alg} \cap A|}$ is largest but add $S \cap I_{alg}$

Proof sketch.

- 1. take clique-based separator S
- 2. recurse on half A where ratio $\frac{|I_{opt} \cap A|}{|I_{alg} \cap A|}$ is largest but add $S \cap I_{alg}$

until $|I_{opt}| + |I_{alg}| = \Omega((1/\varepsilon)^{\frac{1}{1-\delta}})$ we still have $\frac{|I_{opt}|}{|I_{alg}|} \ge \frac{1}{1-\varepsilon/2}$

Theorem. There is a SAS for disk graphs (and other graphs with sublinear clique-based separators) for INDEPENDENT SET.

Consider graph class with clique-based separators of weight $O(n^{\delta})$, for $\delta < 1$.

Algorithm

4.

- \triangleright Upon each insertion or deletion, do the following
- 1. if $|I_{\text{alg}}| \ge (1 \varepsilon) \cdot \text{Opt}$
- 2. then do nothing
- 3. else find J_{out}, J_{in} such that
 - $(I_{\mathrm{alg}} \setminus J_{\mathrm{out}}) \cup J_{\mathrm{in}}$ is independent set
 - $|J_{\rm in}| > |J_{\rm out}|$

always possible!

• $|J_{\text{out}}| + |J_{\text{in}}| = O((1/\varepsilon)^{\frac{1}{1-\delta}})$

replace J_{out} by $J_{\text{in}} \implies$ will restore $|I_{\text{alg}}| \ge (1 - \varepsilon) \cdot \text{Opt}$

Stable Approximation Schemes for Independent Set?

Is there a SAS for $\ensuremath{\operatorname{INDEPENDENT}}$ Set on

• trees?

- graphs of maximum bounded degree? **NO**
- planar graphs?

• disk graphs?

YES

YES

Concluding remarks

What we have seen

- stable algorithms and Stable Approximation Schemes (SAS)
- SAS results and no-SAS results for the broadcast range-assignment problem
- \bullet SAS results and no-SAS results for <code>INDEPEDENDENT</code> SET
- advertisement for clique-based separators

What we have not seen

• algorithms with very small satbility parameter (see our exisiting and upcoming paper)

What is open

• many things!

Thanks for your attention! and to Arpan Sadhukan and Frits Spieksma

